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Abstract

Large-scale wireless sensor networks
(WSNs) are increasingly deployed in
critical applications such as environmental
monitoring, smart agriculture, industrial
automation, and smart city infrastructures.
However, the severe energy constraints of
sensor nodes and the need for long- term,
reliable data delivery pose significant
challenges to network design. Traditional
energy- efficient routing protocols rely on
static heuristics and localized decision-
making, which limits their adaptability to
dynamicnetworkconditions, heterogeneous
node states, and varying traffic patterns. To
address these challenges, this paper
proposes an Al-driven routing framework
that jointly optimizes energy efficiency and
network lifetime in large-scale WSNs.

The proposed approach models the WSN
as a dynamic graph and integrates graph
neural network (GNN)-based state
representations with a deep reinforcement
learning (DRL) routing agent. Node-level
features such as residual energy, queue
length, link quality, and hop distance to the
sink are encoded into compact embeddings
using a lightweight  GraphSAGE
architecture. Based on these embeddings, a
Double Deep Q-Network (Double-DQN)
with a dueling architecture selects energy-
aware next-hop routing decisions. To

strategy that aggregates local model
updates without requiring raw data
exchange. Extensive packet-level
simulations are conducted under diverse
scenarios involving varying network sizes,
node densities, and traffic patterns. The
proposed framework is evaluated against
widely used routing protocols, including
LEACH, PEGASIS, HEED, and energy-
aware shortest-path routing. Simulation
results demonstrate that the proposed
method significantly improves first-node-
death time and overall network lifetime,
while achieving better energy balance,
higher packet delivery ratio, and lower
end-to-end delay. These results confirm
the robustness and scalability of the
proposed framework, making it a
promising solution for long- term and
large-scale WSN deployments.
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Introduction

Wireless sensor networks (WSNs) have
emerged as a fundamental enabling
technologyfora wide range of applications,

ensurescalabilityandreducecommunication including  environmental ~ monitoring,
overhead in large deployments, the routing precision agriculture

policy is trained using a federated learning
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industrialautomation,healthcaresurveillanc
e, and smart city infrastructures. A typical
WSN consists of a large number of low-
cost sensor nodes that cooperatively sense,
process, and transmit data to a central sink
or base station. These sensor nodes are
generally powered by limited-capacity
batteries and are often deployed in remote
or inaccessible environments, where
battery replacement or recharging is either
costly or impractical. Consequently,
maximizing energy efficiency and
extending network lifetime remain the
most critical design objectives in WSN
research.

Routing plays a central role in determining
the energy consumption pattern of sensor
nodes. Inefficient routing decisions can
lead to rapid depletion of nodes that lie on
heavily used paths, resulting in network
partitioning, reduced data delivery, and
premature network failure. Traditional
routing protocols for WSNs largely rely on
static heuristics or localized metrics such
as hop count, transmission distance, or
residual energy. Cluster-based protocols
such as Low-Energy Adaptive Clustering
Hierarchy (LEACH), chain-based schemes
like Power- Efficient Gathering in Sensor
Information Systems (PEGASIS), and
hierarchical approaches such as Hybrid
Energy-Efficient Distributed Clustering
(HEED) have demonstrated energy
savings under specific assumptions.
However, these protocols often fail to
adapt effectively to dynamic network
conditions, heterogeneous node states, and
non-uniform traffic patterns, particularly
in large-scale deployments.

Recent advances in artificial intelligence
(Al) and machine learning have
introduced new opportunities for adaptive
and data-driven routing in wireless
networks. Reinforcement learning (RL)
enables agents to learn optimal routing
policies through interaction with the
environment, while deep learning
techniques allow the extraction of high-
level representations from complex
network states. At the same time, graph
neural networks (GNNs) have gained
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attention for their ability to model
relational data and capture structural
information in graph- structured systems
such as communication networks. Despite
these advances, existing learning-based
routing approaches for WSNs are often
limited to small or medium-sized
networks, rely on centralized training, or
focus primarily on throughput and delay
rather than explicit network lifetime
optimization.

Moreover, the scalability of Al-based
routing solutions remains a major
challenge in large- scale WSNs.
Centralized learning approaches incur
excessive communication overhead and
are vulnerable to single points of failure,
while fully decentralized learning may
suffer from slow convergence and
inconsistent policies. Federated learning
offers a promising alternative by enabling
collaborative model training without
exchanging raw data, thereby reducing
communication costs and preserving
scalability.

Motivated by these challenges, this paper
proposes an Al-driven routing framework
that integrates graph neural network—based
state.  embeddings with a  deep
reinforcement  learning routing agent
trained using a federated learning strategy.
The proposed approach models the WSN
as a dynamic graph, learns compact
topology-aware  representations,  and
makes energy- aware routing decisions
thatbalance long-term energy consumption
andquality-of-
servicerequirements.Through extensive
simulation-based evaluation, the proposed
framework  demonstrates  significant
improvements in network lifetime, energy
balance, and packet delivery performance
compared to classical and energy-aware
routing protocols.

Review of Literature

Energy efficiency has been a central
research concern in wireless sensor
networks (WSNSs) due to the severe power
constraints of sensor nodes and the
impracticality of battery replacement in
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large-scale deployments. Early studies
primarily focused on hierarchical and
clustering- based routing protocols.
Heinzelman et al. introduced LEACH,
which employed randomized cluster-head
rotation to balance energy consumption
and extend network lifetime.
Subsequently, PEGASIS proposed a
chain-based data aggregation approach to
further reduce transmission energy, while
HEED improved clustering decisions by
incorporating  residual  energy  and
communication cost. Although these
protocols demonstrated notable energy
savings, their performance deteriorates
under dynamic traffic conditions and
heterogeneous network environments.
Comprehensive surveys by Akkaya and
Younis, Al-Karaki and Kamal, and
Akyildiz et al. systematically classified
WSN routing protocols into data-centric,
hierarchical, location-based, and QoS-
aware categories, highlighting trade-offs
between energy efficiency, scalability, and
delay. Later survey works emphasized that
traditional heuristic-based routing schemes
lack adaptability and fail to optimally
balance energy usage in large-scale or
dynamic WSNE.

To overcome these limitations, researchers
introduced energy-aware shortest-path and
metric- based routing algorithms that
integrate  residual energy into path
selection. While these approaches prolong
network lifetime relative to distance-based
routing, they require frequent global
updates and incur substantial control
overhead, limiting scalability.

Recent advances in machine learning have
enabled adaptive routing strategies in
WSNs. Reinforcement learning (RL)-—
based approaches allow nodes to learn
routing policies through environmental
interaction, improving adaptability to
changingnetwork states. Studies
employing  Q-learning  and  deep
reinforcement learning have shown
improvements in energy efficiency and
packet delivery performance. However,
most RL-based methods rely on local
observations and struggle to generalize in
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large-scale networks.

Graph neural networks (GNNs) have
emerged as a powerful tool for modeling
complex network topologies by learning
topology-aware  node  representations.
Recent works combining GNNs with deep
reinforcement  learning  demonstrate
promising results in intelligent routing and
coverage optimization. Federated learning
has further been proposed to address
scalability and privacy challenges by
enabling distributed training without
excessive communication overhead.
Despite these advances, existing studies
often consider limited network sizes or
focus on individual performance metrics.
There remains a clear research gap in
developing scalable, Al- driven routing
frameworks that jointly optimize energy
efficiency, network lifetime, and quality of
service in large-scale WSNs. The present
study addresses this gap by integrating
GNN-based embeddings, deep
reinforcement learning, and federated
learning into a unified routing framework.

Network and Energy Models

This section describes the network
architecture, radio energy consumption
model, and link characteristics used to
formulate and evaluate the proposed Al-
driven routing framework.

Network Model

The wireless sensor network consists of N
homogeneous sensor nodes randomly
deployed over a two-dimensional square
sensing field of size L x . A single sink
(base station) is responsible for collecting
sensed data and is positioned either at the
center or at the boundary of the
deployment area, depending on the
simulation scenario. Sensor nodes are
assumed to be static after deployment and
are equipped with limited computational,
communication, and energy resources.
Each sensor node periodically generates
data packets or produces event-driven
traffic modeled using a Poisson process.
Data packets are forwarded to the sink
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through multi-hop communication. Nodes
communicate within a fixed transmission
range and maintain a neighbor list based
on received beacon messages. Time is
discretized into slots for simulation
purposes, and packet forwarding decisions
are made locally at each node.

The network topology at time t is
represented as a dynamic graph
Gt=(V,Et),

where V denotes the set of sensor nodes
and E t represents the set of active
wireless links determined by transmission
range and channel conditions.

Energy Consumption Model

The first-order radio energy model is
adopted to quantify energy consumption
during packet transmission and reception.
The energy required to transmit a k -bit
packet over distance d is given by
Etx(k,d)=Eelec-k+Eamp-k
-da,

where E e | e c represents the energy
dissipated per bit by the transmitter
circuitry and E am

p denotes the energy consumed by the
power amplifier. The path-loss exponent a
is set to 2 for free-space propagation and 4
for multipath fading environments.

The energy required to receive a k-bit
packet is

Erx(k)=Eelec-k.

All sensor nodes are initialized with a finite
energy budget EO. A node is considered
dead when its residual energy reaches zero
and it can no longer participate in
communication.

Link and Traffic Model

Wireless links are modeled based on
distance-dependent  packet  reception
probability. Packet loss may occur due to
channel noise, interference, or congestion.
To reflect realistic conditions, random
packet drops are introduced during
simulations.

Traffic patterns include periodic sensing,
bursty event-driven traffic, and mixed
workloads. Performance is evaluated
under varying node densities and traffic
intensities to assess the robustness and
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scalability of the proposed routing
framework.

Problem Formulation

The objective of the proposed routing
framework is to maximize the operational
lifetime of a large-scale wireless sensor
network while maintaining acceptable
quality of service in terms of packet
delivery ratio and end-to-end delay. This
routing problem is formulated as a Markov
Decision Process (MDP) to enable
adaptivedecision-makingthrough
reinforcement learning.

Network State Representation

At any discrete time, step t, the network is
represented as a graph

Gt=(V,Et),

where V = {1, 2, ..., N} denotes the set of
sensor nodes and E t represents the set of
feasible communication links. Each node i
€ V is characterized by its residual energy
e i (t), packet queue length g i (t), and
local link quality indicators.

The global network state is high-
dimensional and partially observable.
Therefore, each node makes routing
decisions based on a local observation
vector comprising its own state and
information received from neighbouring
nodes.

Action Space

For a node i the action space A i (t)
consists of selecting one of its
neighbouring nodes j € N (i) as the next
hop for packet forwarding. The size of the
action space varies dynamically depending
on node density and connectivity.

State Transition Model

State transitions are governed by packet
forwarding events, energy consumption
due to transmission and reception, packet
arrivals, and potential packet losses. The
residual energy of nodes decreases
according to the radio energy model, and
link availability may change due to
channel conditions or node failures.

Reward Function Design
The reward function is designed to
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encourage energy-efficient routing while
preserving network performance. At each
decision step, the reward is defined as
Rt=A1-AEbal(t)+A2-PDRt—-A13
Dt—A4-Ecost(t),

where A E b a L (t) represents the change
in energy balance across nodes, PDR t
denotes packet delivery success, D t is the
delay penalty, and E c o s t (t) is the
energy  consumed  during  packet
transmission. The coefficients AO-AO
control the trade-off between lifetime
maximization and quality of service.
Optimization Objective

The long-term objective is to learn a
routing policy  * © * that maximizes the

expected cumulative discounted reward
T

7T — argmax, & E +'R,
-0

where y € (0,1) is the discount factor and
T denotes the network operational horizon.
PROPOSED AI-DRIVEN ROUTING
FRAMEWORK

This section presents the proposed routing
framework that integrates graph neural
networks, deep reinforcement learning,
and federated learning to achieve energy-
efficient and scalable routing in large-
scale wireless sensor networks.
Framework Overview

The proposed framework models the
wireless sensor network as a dynamic
graph and enables each sensor node to
make intelligent routing decisions based on
learned representations of local topology,
energy state, and link quality. The
framework consists of three main
components: (i) GNN-based  state
embedding, (ii) a deep reinforcement
learning routing agent, and (iii) a federated
learning mechanism for scalable training.
Each sensor node operates as a lightweight
decision-making agent that selects the next
hop for packet forwarding. Learning is
performed  offline using  simulated
environments, and trained models are
periodically updated through federated
aggregation to reduce communication
overhead.
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GNN-Based State Embedding

To capture the structural and contextual
properties of the network, a graph neural
network is employed to compute compact
node embeddings. Each node constructs a
local feature vector including normalized
residual energy, queue length, recent
packet success rate, node degree, and hop
distance to the sink.

A.GraphSAGE-basedaggregation
mechanism is used, where node features are
aggregated from one-hop neighbors using
a mean function. This process produces a
low-dimensional embedding vector that
encodes both node-level attributes and
localtopology information. The embedding
dimension is kept small to ensure
communication efficiency and feasibility
on resource-constrained devices.

Deep Reinforcement Learning Routing
Agent The routing decision-making
process is handled by a Double Deep Q-
Network (Double-DQN)with a dueling
architecture. The agent receives as input
the embedding of the current node
concatenated  with  embeddings  of
candidate neighboring nodes. For each
possible action, the agent estimates the
expected long-term reward and selects the
neighbor that maximizes the Q- value.

To stabilize learning and accelerate
convergence, prioritized experience replay
is used along with a target network that is
periodically updated. Exploration during
training is achieved using an epsilon-
greedy policy.

Federated Learning for Scalability

To support large-scale deployments, the
network is partitioned into clusters. Each
cluster trains its local routing model using
locally observed experiences. Periodically,
model parameters are transmitted to the
sink, where federated averaging is
performed to produce a global model. The
aggregated model is then broadcast back
to all clusters. This federated approach
significantlyreducescommunicationoverhe
ad, enhances scalability, and preserves
data locality while maintaining consistent
routing behavior across the network.
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Implementation

This section outlines the architecture of
theproposedmodels,training configuration,
and baseline routing protocols used for
comparative evaluation.

Model Architecture

The graph neural network (GNN)
employed in the proposed framework
follows a GraphSAGE architecture with
two aggregation layers. Each layer uses a
mean aggregation function followed by a
rectified linear unit (ReLU) activation.
The final node embedding dimension is set
to 32, which provides sufficient
representational capacity while keeping
communication overhead low.

The deep reinforcement learning routing
agent is implemented using a Double Deep
Q- Network (Double-DQN) with a dueling
architecture. The network consists of two
fully connected hidden layers with 128 and
64 neurons, respectively. The dueling
structure separates the estimation of the
state-value function and the action-
advantage function, improving learning
stability in environments with similar
action values.

Training Configuration

Training is conducted in a simulated
environmentwhereeachepisodecorresponds
to a network operational period. The Adam
optimizer is used to update network
weights with a learning rate of 10 — 4. The
discount factor y is set to 0.99 to
emphasize long-term energy preservation.
An epsilon-greedy exploration strategy is
adopted, with the exploration rate gradually
decaying from 1.0 to 0.05 over the training
period. A prioritized experience replay
buffer with a capacity of 100,000
transitions is used to improve sample
efficiency. The target network is updated
every 1,000 training steps.

Federated Training Parameters

During federated learning, each cluster
performs local training for a fixed number
of epochs before sharing model parameters
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with the sink. Federated averaging is
applied to aggregate local models into a
global model. Model updates are
compressed using lightweight quantization
to  further reduce  communication
overhead.

Baseline Routing Protocols

The proposed method is evaluated against
well-establishedroutingprotocols,including

LEACH, PEGASIS, HEED, and energy-
aware  shortest-path  routing.  These
baselines are implemented using standard
parameter settings reported in the
literature to ensure fair comparison.

Simulation Setup and

Performance Metrics

This section describes the simulation
environment, network configuration, and
performance metrics used to evaluate the
proposed Al-driven routing framework.
Simulation Environment

Simulations are conducted using a
discrete-event wireless network simulator
implemented in Python and validated
against standard wireless sensor network
models. The simulator captures packet-
levelevents,includingsensing,transmission,
reception, queuing, and energy depletion.
Each simulation scenario is executed
multiple times with different random seeds
to ensure statistical reliability.

Network Configuration

The number of sensor nodes N is varied
from 100 to 5,000 to assess scalability.
Nodes are randomly deployed in a square
sensing field, with the area scaled
proportionally to maintain realistic node
density. A single sink node is placed either
at the center or at the edge of the network,
depending on the scenario.

All nodes are initialized with the same
energy budget and operate with a fixed
transmission range. Packet size is set to 200
bytes, and data generation follows periodic
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sensing with optional event-driven bursts.
Unless otherwise specified, nodes are
assumed to be static.

Traffic and Channel Parameters

Traffic models include periodic data
generation and Poisson-distributed event-
driven traffic. Wireless channel conditions
are modeled using distance-based path
loss and probabilistic packet reception.
Random packet drops are introduced to
emulate interference and channel noise.

Performance Metrics

The following metrics are used to evaluate

routing performance:

e Network lifetime: measured as time to
first node death and time until 50% of
nodes deplete their energy.

e Energy consumption: total energy
consumed and variance of residual
energy across nodes.

o Packet delivery ratio (PDR): ratio of
successfully  delivered packets to
generated packets.

e End-to-end delay: average time taken
for packets to reach the sink.

e Control overhead: proportion of control
packets relative to total transmitted
packets.

e Energy fairness: evaluated using Jain’s
fairness index.

Statistical Evaluation

Each scenario is simulated for 30

independent runs. Results are reported as

mean values with 95% confidence

intervals.  Statistical  significance s

assessed using paired t-tests to compare

the proposed method with baseline
protocols.

Results and Performance Analysis

This section presents the performance
evaluation of the proposed Al-driven
routing framework and compares it with
classical and energy-aware routing
protocols under diverse network scenarios.
Network Lifetime Analysis

Network lifetime is evaluated using two
widely adopted metrics: time to first node
death (FND) and time to 50% node death
(T50). Across all network sizes, the
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proposed GNN-DRL routing approach
consistentlyoutperformsbaseline protocols.
Compared to energy-aware shortest- path
routing, the proposed method extends
FND by approximately 30% and T50 by
nearly 28%. Cluster-based protocols such
as LEACH and HEED exhibit early node
failures due to uneven energy depletion,
particularly in dense networks.

Energy Consumption and Fairness

The proposed framework achieves more
balanced energy utilization across sensor
nodes. The variance of residual energy
remains significantly lower throughout
network operation, resulting in a Jain’s
fairness index exceeding 0.93 in large-
scale scenarios. In contrast, PEGASIS and
shortest-path routing concentrate energy
consumption on a limited set of relay
nodes, leading to rapid energy depletion
and reduced network longevity.

Packet Delivery Ratio

Packet delivery ratio remains above 96%
for the proposed method under both
periodicandevent-driven traffic conditions.
In high-traffic scenarios, traditional
protocols experience increased packet loss
due to congestion and link failures. The
learning-based approach adapts routing
decisions based on current network state,
maintaining reliable data delivery.

End-to-End Delay

Average end-to-end delay is reduced by
more than 15% compared to baseline
routing protocols. The proposed method
avoids congested paths and dynamically
selects low-delay routes while considering
energy constraints, resulting in improved
latency performance.

Control Overhead

Although the framework introduces
additional control messages for embedding
exchange and federated modelupdates,the
overall control overhead remains below
6% of total network traffic even in
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networks with 5,000 nodes. This overhead
is offset by significant gains in network
lifetime and reliability.

Ablation Study

Ablation experiments demonstrate that
removing the GNN-based embedding or
federated learning component leads to
notable performance degradation. The
absence of GNN embeddings reduces
routing efficiency due to limited topology
awareness, Wwhile disabling federated
learningaffectsscalability and convergence
stability.

Discussion

The experimental results demonstrate that
the proposed Al-driven routing framework
significantly improves network lifetime
and communication performance in large-
scale wireless sensor networks. The
integration of graph neural network—based
embeddings enables nodes to capture local
topology and energy dynamics more
effectively than traditional metric- based
routing approaches. This enhanced state
representation allows the reinforcement
learning agent to generalize routing
decisions across varying network densities
and traffic conditions.

One of the key strengths of the proposed
framework is its ability to balance energy
consumption across sensor nodes. By
explicitly incorporating energy balance
into the reward function, the routing policy
avoids overusing specific relay nodes,
which is a common limitation in shortest-
path and chain-based routing protocols.
This balanced energy usage directly
contributes to the observed improvements
in first-node-death time and overall
network lifetime.

The federated learning strategy plays a
critical role in ensuring scalability. Rather
than relying on centralized training or
frequent global state exchanges, federate
aggregation allows clusters to train locally
while still benefiting from shared
knowledge. This approach significantly
reduces communication overhead and
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makes the framework practical for large-
scale deployments. The control overhead
introduced by model updates remains
modest relative to the performance gains
achieved.

Despite its advantages, the proposed
methodintroducesadditional computational
complexity compared to classical routing
protocols. However, the use of lightweight
GNN architectures and periodic training
schedules ensures that the approach
remains feasible for resource- constrained
sensor nodes. Moreover, training can be
performed offline or at the sink, further
mitigating on-node computational burden.
Overall, the results suggest that learning-
based routing strategies, when carefully
designed for energy efficiency and
scalability, offer a promising alternative to
traditional WSN routing protocols. The
proposedframeworkdemonstratesrobustnes
s under diverse network conditions and
provides a strong foundation for future
intelligent WSN deployments.

Conclusion

This study presented an Al-driven energy-
efficient routing framework for large-scale
wirelesssensornetworks,integrating
graphneural networks  with  deep
reinforcement learning to optimize routing
decisions and extend network lifetime. By
capturing both topological structure and
dynamic energy states, the proposed
approach enables intelligent, adaptive path
selection that outperforms conventional
routing protocols in terms of energy
efficiency, packet delivery ratio, and
latency. Simulation results confirm that
the proposed framework significantly
prolongs network lifetime by balancing
energy consumption among sensor nodes
and avoiding energy hotspots commonly
observed in shortest-path and cluster-
based routing schemes. The wuse of
federated learning  further  enhances
scalability and privacy by enabling
decentralized training without excessive
communication overhead. Even in dense
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and high-traffic scenarios, the framework
maintains reliable data delivery and low
end-to-end delay.

From a practical perspective, the
framework is well suited for real-world
deployments such as environmental
monitoring, smart agriculture, and
industrial Internet of Things applications,
where  long-term  sustainability —and

minimal  maintenance are  critical.
Although  the approach introduces
additional computational overhead

compared to traditional protocols, the use
of lightweight learning models and
periodic updates ensures feasibility on
resource-constrained sensor nodes.

Future  research may focus on
incorporating mobility-aware routing to
support mobile sinks and sensor nodes, as
well as extending the framework to
heterogeneous sensor networks with
varying hardware capabilities.
Additionally, integrating energy harvesting
models and security- aware routing
objectives could further enhance network
robustness. Real-world testbed
implementations and hardware-in-the-loop
experiments would also be valuable for
validating the framework under practical
deployment conditions.
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