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Abstract 

Large-scale wireless sensor networks 

(WSNs) are increasingly deployed in 

critical applications such as environmental 

monitoring, smart agriculture, industrial 

automation, and smart city infrastructures. 

However, the severe energy constraints of 

sensor nodes and the need for long- term, 

reliable data delivery pose significant 

challenges to network design. Traditional 

energy- efficient routing protocols rely on 

static heuristics and localized decision- 

making, which limits their adaptability to 

dynamicnetworkconditions, heterogeneous 

node states, and varying traffic patterns. To 

address these challenges, this paper 

proposes an AI-driven routing framework 

that jointly optimizes energy efficiency and 

network lifetime in large-scale WSNs. 

The proposed approach models the WSN 

as a dynamic graph and integrates graph 

neural network (GNN)–based state 

representations with a deep reinforcement 

learning (DRL) routing agent. Node-level 

features such as residual energy, queue 

length, link quality, and hop distance to the 

sink are encoded into compact embeddings 

using a lightweight GraphSAGE 

architecture. Based on these embeddings, a 

Double Deep Q-Network (Double-DQN) 

with a dueling architecture selects energy- 

aware next-hop routing decisions. To 

ensurescalabilityandreducecommunication 

overhead in large deployments, the routing 

policy is trained using a federated learning 

 

strategy that aggregates local model 

updates  without  requiring raw  data 

exchange. Extensive packet-level 

simulations are conducted under diverse 

scenarios involving varying network sizes, 

node densities, and traffic patterns. The 

proposed framework is evaluated against 

widely used routing protocols, including 

LEACH, PEGASIS, HEED, and energy- 

aware shortest-path routing. Simulation 

results demonstrate  that  the  proposed 

method significantly improves first-node- 

death time and overall network lifetime, 

while achieving better energy balance, 

higher packet delivery ratio, and lower 

end-to-end delay. These results confirm 

the robustness and  scalability of the 

proposed  framework,  making it  a 

promising solution for long- term and 

large-scale WSN deployments. 

 

Keywords: 
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Introduction 

Wireless sensor networks (WSNs) have 

emerged as a fundamental enabling 

technologyfora wide range of applications, 

including environmental monitoring, 

precision agriculture 
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industrialautomation,healthcaresurveillanc 

e, and smart city infrastructures. A typical 

WSN consists of a large number of low- 

cost sensor nodes that cooperatively sense, 

process, and transmit data to a central sink 

or base station. These sensor nodes are 

generally powered by limited-capacity 

batteries and are often deployed in remote 

or inaccessible environments, where 

battery replacement or recharging is either 

costly or impractical. Consequently, 

maximizing energy efficiency and 

extending network lifetime remain the 

most critical design objectives in WSN 

research. 

Routing plays a central role in determining 

the energy consumption pattern of sensor 

nodes. Inefficient routing decisions can 

lead to rapid depletion of nodes that lie on 

heavily used paths, resulting in network 

partitioning, reduced data delivery, and 

premature network failure. Traditional 

routing protocols for WSNs largely rely on 

static heuristics or localized metrics such 

as hop count, transmission distance, or 

residual energy. Cluster-based protocols 

such as Low-Energy Adaptive Clustering 

Hierarchy (LEACH), chain-based schemes 

like Power- Efficient Gathering in Sensor 

Information Systems (PEGASIS), and 

hierarchical approaches such as Hybrid 

Energy-Efficient Distributed Clustering 

(HEED) have demonstrated energy 

savings under specific assumptions. 

However, these protocols often fail to 

adapt effectively to dynamic network 

conditions, heterogeneous node states, and 

non-uniform traffic patterns, particularly 

in large-scale deployments. 

Recent advances in artificial intelligence 

(AI) and machine learning have 

introduced new opportunities for adaptive 

and data-driven routing in wireless 

networks. Reinforcement learning (RL) 

enables agents to learn optimal routing 

policies through interaction with the 

environment, while deep learning 

techniques allow the extraction of high- 

level representations from complex 

network states. At the same time, graph 

neural  networks  (GNNs)  have  gained 

attention  for   their ability to  model 

relational data and capture structural 

information in graph- structured systems 

such as communication networks. Despite 

these advances, existing learning-based 

routing approaches for WSNs are often 

limited  to  small  or medium-sized 

networks, rely on centralized training, or 

focus primarily on throughput and delay 

rather than explicit  network lifetime 

optimization. 

Moreover, the scalability of AI-based 

routing solutions remains a major 

challenge in large- scale WSNs. 

Centralized learning approaches incur 

excessive communication overhead and 

are vulnerable to single points of failure, 

while fully decentralized learning may 

suffer from slow convergence and 

inconsistent policies. Federated learning 

offers a promising alternative by enabling 

collaborative model training without 

exchanging raw data, thereby reducing 

communication costs and preserving 

scalability. 

Motivated by these challenges, this paper 

proposes an AI-driven routing framework 

that integrates graph neural network–based 

state  embeddings with  a  deep 

reinforcement  learning  routing agent 

trained using a federated learning strategy. 

The proposed approach models the WSN 

as a dynamic  graph,  learns compact 

topology-aware   representations,   and 

makes energy- aware routing decisions 

thatbalance long-term energy consumption 

andquality-of- 

servicerequirements.Through   extensive 

simulation-based evaluation, the proposed 

framework demonstrates significant 

improvements in network lifetime, energy 

balance, and packet delivery performance 

compared to classical and energy-aware 

routing protocols. 

 

Review of Literature 

Energy efficiency has been a central 

research concern in wireless sensor 

networks (WSNs) due to the severe power 

constraints of sensor nodes and the 

impracticality of battery replacement in 
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large-scale deployments. Early studies 

primarily focused on hierarchical and 

clustering- based routing protocols. 

Heinzelman et al. introduced LEACH, 

which employed randomized cluster-head 

rotation to balance energy consumption 

and extend network lifetime. 

Subsequently, PEGASIS proposed a 

chain-based data aggregation approach to 

further reduce transmission energy, while 

HEED improved clustering decisions by 

incorporating residual energy and 

communication cost. Although these 

protocols demonstrated notable energy 

savings, their performance deteriorates 

under dynamic traffic conditions and 

heterogeneous network environments. 

Comprehensive surveys by Akkaya and 

Younis, Al-Karaki and Kamal, and 

Akyildiz et al. systematically classified 

WSN routing protocols into data-centric, 

hierarchical, location-based, and QoS- 

aware categories, highlighting trade-offs 

between energy efficiency, scalability, and 

delay. Later survey works emphasized that 

traditional heuristic-based routing schemes 

lack adaptability and fail to optimally 

balance energy usage in large-scale or 

dynamic WSNs. 

To overcome these limitations, researchers 

introduced energy-aware shortest-path and 

metric- based routing algorithms that 

integrate residual energy into path 

selection. While these approaches prolong 

network lifetime relative to distance-based 

routing, they require frequent global 

updates and incur substantial control 

overhead, limiting scalability. 

Recent advances in machine learning have 

enabled adaptive routing strategies in 

WSNs. Reinforcement learning (RL)– 

based approaches allow nodes to learn 

routing policies through environmental 

interaction, improving adaptability to 

changingnetwork states. Studies 

employing Q-learning and deep 

reinforcement learning have shown 

improvements in energy efficiency and 

packet delivery performance. However, 

most RL-based methods rely on local 

observations and struggle to generalize in 

large-scale networks. 

Graph neural networks (GNNs) have 

emerged as a powerful tool for modeling 

complex network topologies by learning 

topology-aware node representations. 

Recent works combining GNNs with deep 

reinforcement learning demonstrate 

promising results in intelligent routing and 

coverage optimization. Federated learning 

has further been proposed to address 

scalability and privacy challenges by 

enabling distributed training without 

excessive communication overhead. 

Despite these advances, existing studies 

often consider limited network sizes or 

focus on individual performance metrics. 

There remains a clear research gap in 

developing scalable, AI- driven routing 

frameworks that jointly optimize energy 

efficiency, network lifetime, and quality of 

service in large-scale WSNs. The present 

study addresses this gap by integrating 

GNN-based embeddings, deep 

reinforcement learning, and federated 

learning into a unified routing framework. 

 

Network and Energy Models 

This section describes the network 

architecture, radio energy consumption 

model, and link characteristics used to 

formulate and evaluate the proposed AI- 

driven routing framework. 

 

Network Model 

The wireless sensor network consists of 𝑁 
homogeneous sensor nodes randomly 

deployed over a two-dimensional square 

sensing field of size 𝐿 × . A single sink 

(base station) is responsible for collecting 

sensed data and is positioned either at the 

center or at the boundary of the 

deployment area, depending on the 

simulation scenario. Sensor nodes are 

assumed to be static after deployment and 

are equipped with limited computational, 

communication, and energy resources. 

Each sensor node periodically generates 

data packets or produces event-driven 

traffic modeled using a Poisson process. 

Data packets are forwarded to the sink 
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through multi-hop communication. Nodes 

communicate within a fixed transmission 

range and maintain a neighbor list based 

on received beacon messages. Time is 

discretized into slots for simulation 

purposes, and packet forwarding decisions 

are made locally at each node. 

The network topology at time 𝑡 is 
represented as a dynamic graph 

𝐺 𝑡 = ( 𝑉 , 𝐸 𝑡 ) , 
where 𝑉 denotes the set of sensor nodes 

and 𝐸 𝑡 represents the set of active 

wireless links determined by transmission 

range and channel conditions. 

Energy Consumption Model 
The first-order radio energy model is 

adopted to quantify energy consumption 

during packet transmission and reception. 

The energy required to transmit a 𝑘 -bit 

packet over distance 𝑑 is given by 

𝐸 𝑡 𝑥 ( 𝑘 , 𝑑 ) = 𝐸 𝑒 𝑙 𝑒 𝑐 ⋅ 𝑘 + 𝐸 𝑎 𝑚 𝑝 ⋅ 𝑘 
⋅ 𝑑 𝛼 , 
where 𝐸 𝑒 𝑙 𝑒 𝑐 represents the energy 

dissipated per bit by the transmitter 

circuitry and 𝐸 𝑎 𝑚 
𝑝 denotes the energy consumed by the 

power amplifier. The path-loss exponent 𝛼 
is set to 2 for free-space propagation and 4 

for multipath fading environments. 

The energy required to receive a 𝑘-bit 
packet is 

𝐸 𝑟 𝑥 ( 𝑘 ) = 𝐸 𝑒 𝑙 𝑒 𝑐 ⋅ 𝑘 . 
All sensor nodes are initialized with a finite 

energy budget E0. A node is considered 

dead when its residual energy reaches zero 

and it can no longer participate in 

communication. 

Link and Traffic Model 

Wireless links are modeled based on 

distance-dependent packet reception 

probability. Packet loss may occur due to 

channel noise, interference, or congestion. 

To reflect realistic conditions, random 

packet drops are introduced during 

simulations. 

Traffic patterns include periodic sensing, 

bursty event-driven traffic, and mixed 

workloads. Performance is evaluated 

under varying node densities and traffic 

intensities to assess the robustness and 

scalability of the proposed routing 

framework. 

 

Problem Formulation 

The objective of the proposed routing 

framework is to maximize the operational 

lifetime of a large-scale wireless sensor 

network while maintaining  acceptable 

quality of service in terms of packet 

delivery ratio and end-to-end delay. This 

routing problem is formulated as a Markov 

Decision  Process (MDP) to enable 

adaptivedecision-makingthrough 

reinforcement learning. 

Network State Representation 

At any discrete time, step 𝑡, the network is 
represented as a graph 

𝐺 𝑡 = ( 𝑉 , 𝐸 𝑡 ) , 
where 𝑉 = {1, 2, …, 𝑁} denotes the set of 

sensor nodes and 𝐸 𝑡 represents the set of 

feasible communication links. Each node 𝑖 
∈ 𝑉 is characterized by its residual energy 

𝑒 𝑖 (𝑡), packet queue length 𝑞 𝑖 (𝑡), and 
local link quality indicators. 

The global network state is high- 

dimensional and partially observable. 

Therefore, each node makes routing 

decisions based on a local observation 

vector comprising its own state and 

information received from neighbouring 

nodes. 

Action Space 

For a node 𝑖 the action space 𝐴 𝑖 (𝑡) 

consists of selecting one of its 

neighbouring nodes 𝑗 ∈ 𝑁 (𝑖) as the next 

hop for packet forwarding. The size of the 

action space varies dynamically depending 

on node density and connectivity. 

State Transition Model 
State transitions are governed by packet 

forwarding events, energy consumption 

due to transmission and reception, packet 

arrivals, and potential packet losses. The 

residual energy of nodes decreases 

according to the radio energy model, and 

link availability may change due to 

channel conditions or node failures. 

 

Reward Function Design 

The  reward  function  is  designed  to 
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encourage energy-efficient routing while 

preserving network performance. At each 

decision step, the reward is defined as 

𝑅 𝑡 = 𝜆 1 ⋅ Δ 𝐸 𝑏𝑎𝑙 (𝑡) + 𝜆 2 ⋅ PDR 𝑡 − 𝜆 3 

⋅ 𝐷 𝑡 − 𝜆 4 ⋅ 𝐸 𝑐 𝑜 𝑠 𝑡 (𝑡), 

where Δ 𝐸 𝑏 𝑎 𝑙 (𝑡) represents the change 

in energy balance across nodes, PDR 𝑡 
denotes packet delivery success, 𝐷 𝑡 is the 

delay penalty, and 𝐸 𝑐 𝑜 𝑠 𝑡 (𝑡) is the 

energy consumed during packet 

transmission. The coefficients λ◻–λ◻ 
control the trade-off between lifetime 

maximization and quality of service. 

Optimization Objective 
The long-term objective is to learn a 

routing policy 𝜋 ∗ π ∗ that maximizes the 

expected cumulative discounted reward 

 
 

where 𝛾 ∈ (0,1) is the discount factor and 

𝑇 denotes the network operational horizon. 
PROPOSED AI-DRIVEN ROUTING 

FRAMEWORK 

This section presents the proposed routing 

framework that integrates graph neural 

networks, deep reinforcement learning, 

and federated learning to achieve energy- 

efficient and scalable routing in large- 

scale wireless sensor networks. 

Framework Overview 

The proposed  framework   models    the 

wireless sensor network as a dynamic 

graph and enables each sensor node to 

make intelligent routing decisions based on 

learned representations of local topology, 

energy state,  and   link   quality.   The 

framework  consists    of   three main 

components:   (i)   GNN-based  state 

embedding, (ii)   a deep  reinforcement 

learning routing agent, and (iii) a federated 

learning mechanism for scalable training. 

Each sensor node operates as a lightweight 

decision-making agent that selects the next 

hop for packet forwarding. Learning is 

performed  offline   using   simulated 

environments, and trained models are 

periodically updated through federated 

aggregation  to   reduce communication 

overhead. 

GNN-Based State Embedding 

To capture the structural and contextual 

properties of the network, a graph neural 

network is employed to compute compact 

node embeddings. Each node constructs a 

local feature vector including normalized 

residual energy, queue length, recent 

packet success rate, node degree, and hop 

distance to the sink. 

 

A.GraphSAGE-basedaggregation 

mechanism is used, where node features are 

aggregated from one-hop neighbors using 

a mean function. This process produces a 

low-dimensional embedding vector that 

encodes both node-level attributes and 

localtopology information. The embedding 

dimension is kept small to ensure 

communication efficiency and feasibility 

on resource-constrained devices. 

Deep Reinforcement Learning Routing 

Agent The routing decision-making 

process is handled by a Double Deep Q- 

Network (Double-DQN)with a dueling 

architecture. The agent receives as input 

the embedding  of the current node 

concatenated with  embeddings  of 

candidate neighboring nodes. For each 

possible action, the agent estimates the 

expected long-term reward and selects the 

neighbor that maximizes the Q- value. 

To stabilize learning and accelerate 

convergence, prioritized experience replay 

is used along with a target network that is 

periodically updated. Exploration during 

training is achieved using an epsilon- 

greedy policy. 

Federated Learning for Scalability 

To support large-scale deployments, the 

network is partitioned into clusters. Each 

cluster trains its local routing model using 

locally observed experiences. Periodically, 

model parameters are transmitted to the 

sink, where federated averaging is 

performed to produce a global model. The 

aggregated model is then broadcast back 

to all clusters. This federated approach 

significantlyreducescommunicationoverhe 

ad, enhances scalability, and preserves 

data locality while maintaining consistent 

routing behavior across the network. 
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Implementation 

This section outlines the architecture of 

theproposedmodels,training configuration, 

and baseline routing protocols used for 

comparative evaluation. 

 

Model Architecture 

The graph neural network (GNN) 

employed in the proposed framework 

follows a GraphSAGE architecture with 

two aggregation layers. Each layer uses a 

mean aggregation function followed by a 

rectified linear unit (ReLU) activation. 

The final node embedding dimension is set 

to 32, which provides sufficient 

representational capacity while keeping 

communication overhead low. 

The deep reinforcement learning routing 

agent is implemented using a Double Deep 

Q- Network (Double-DQN) with a dueling 

architecture. The network consists of two 

fully connected hidden layers with 128 and 

64 neurons, respectively. The dueling 

structure separates the estimation of the 

state-value function and the action- 

advantage function, improving learning 

stability in environments with similar 

action values. 

 

Training Configuration 

Training is conducted in a simulated 

environmentwhereeachepisodecorresponds 

to a network operational period. The Adam 

optimizer  is used to update network 

weights with a learning rate of 10 − 4. The 

discount  factor 𝛾 is set  to 0.99 to 

emphasize long-term energy preservation. 

An epsilon-greedy exploration strategy is 

adopted, with the exploration rate gradually 

decaying from 1.0 to 0.05 over the training 

period. A prioritized experience replay 

buffer with a  capacity of  100,000 

transitions is used to improve sample 

efficiency. The target network is updated 

every 1,000 training steps. 

 

Federated Training Parameters 

During federated learning, each cluster 

performs local training for a fixed number 

of epochs before sharing model parameters 

with the sink. Federated averaging is 

applied to aggregate local models into a 

global model. Model updates are 

compressed using lightweight quantization 

to further reduce communication 

overhead. 

 

Baseline Routing Protocols 

The proposed method is evaluated against 

well-establishedroutingprotocols,including 

LEACH, PEGASIS, HEED, and energy- 

aware shortest-path routing. These 

baselines are implemented using standard 

parameter settings reported in the 

literature to ensure fair comparison. 

 

Simulation Setup and 

Performance Metrics 

This section describes the simulation 

environment, network configuration, and 

performance metrics used to evaluate the 

proposed AI-driven routing framework. 

Simulation Environment 

Simulations are conducted using a 

discrete-event wireless network simulator 

implemented in Python and validated 

against standard wireless sensor network 

models. The simulator captures packet- 

levelevents,includingsensing,transmission, 

reception, queuing, and energy depletion. 

Each simulation scenario is executed 

multiple times with different random seeds 

to ensure statistical reliability. 

 

Network Configuration 

The number of sensor nodes 𝑁 is varied 

from 100 to 5,000 to assess scalability. 

Nodes are randomly deployed in a square 

sensing field, with the area scaled 

proportionally to maintain realistic node 

density. A single sink node is placed either 

at the center or at the edge of the network, 

depending on the scenario. 

All nodes are initialized with the same 

energy budget and operate with a fixed 

transmission range. Packet size is set to 200 

bytes, and data generation follows periodic 
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sensing with optional event-driven bursts. 

Unless otherwise specified, nodes are 

assumed to be static. 

Traffic and Channel Parameters 

Traffic models include periodic data 

generation and Poisson-distributed event- 

driven traffic. Wireless channel conditions 

are modeled using distance-based path 

loss and probabilistic packet reception. 

Random packet drops are introduced to 

emulate interference and channel noise. 

 

Performance Metrics 

The following metrics are used to evaluate 

routing performance: 

 Network lifetime: measured as time to 
first node death and time until 50% of 

nodes deplete their energy. 

 Energy consumption: total energy 

consumed and variance of residual 
energy across nodes. 

 Packet delivery ratio (PDR): ratio of 
successfully delivered packets to 

generated packets. 

 End-to-end delay: average time taken 

for packets to reach the sink. 

 Control overhead: proportion of control 

packets relative to total transmitted 

packets. 

 Energy fairness: evaluated using Jain’s 

fairness index. 

Statistical Evaluation 

Each scenario is simulated for 30 

independent runs. Results are reported as 

mean values with 95% confidence 

intervals. Statistical significance is 

assessed using paired t-tests to compare 

the proposed method with baseline 

protocols. 

 

Results and Performance Analysis 

This section presents the performance 

evaluation of the proposed AI-driven 

routing framework and compares it with 

classical and energy-aware routing 

protocols under diverse network scenarios. 

Network Lifetime Analysis 

Network lifetime is evaluated using two 

widely adopted metrics: time to first node 

death (FND) and time to 50% node death 

(T50).  Across  all  network  sizes,  the 

proposed GNN–DRL routing approach 

consistentlyoutperformsbaseline protocols. 

Compared to energy-aware shortest- path 

routing, the proposed method extends 

FND by approximately 30% and T50 by 

nearly 28%. Cluster-based protocols such 

as LEACH and HEED exhibit early node 

failures due to uneven energy depletion, 

particularly in dense networks. 

 

Energy Consumption and Fairness 

The proposed framework achieves more 

balanced energy utilization across sensor 

nodes. The variance of residual energy 

remains significantly lower throughout 

network operation, resulting in a Jain’s 

fairness index exceeding 0.93 in large- 

scale scenarios. In contrast, PEGASIS and 

shortest-path routing concentrate energy 

consumption on a limited set of relay 

nodes, leading to rapid energy depletion 

and reduced network longevity. 

 

Packet Delivery Ratio 

Packet delivery ratio remains above 96% 

for the proposed method under both 

periodicandevent-driven traffic conditions. 

In high-traffic scenarios, traditional 

protocols experience increased packet loss 

due to congestion and link failures. The 

learning-based approach adapts routing 

decisions based on current network state, 

maintaining reliable data delivery. 

 

End-to-End Delay 

Average end-to-end delay is reduced by 

more than 15% compared to baseline 

routing protocols. The proposed method 

avoids congested paths and dynamically 

selects low-delay routes while considering 

energy constraints, resulting in improved 

latency performance. 

 

Control Overhead 

Although  the  framework introduces 

additional control messages for embedding 

exchange and federated modelupdates,the 

overall control overhead remains below 

6% of total network traffic  even in 
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networks with 5,000 nodes. This overhead 

is offset by significant gains in network 

lifetime and reliability. 

 

Ablation Study 

Ablation experiments demonstrate that 

removing the GNN-based embedding or 

federated learning component leads to 

notable performance degradation. The 

absence of GNN embeddings reduces 

routing efficiency due to limited topology 

awareness, while disabling federated 

learningaffectsscalability and convergence 

stability. 

 

Discussion 

The experimental results demonstrate that 

the proposed AI-driven routing framework 

significantly improves network lifetime 

and communication performance in large- 

scale wireless sensor networks. The 

integration of graph neural network–based 

embeddings enables nodes to capture local 

topology and energy dynamics more 

effectively than traditional metric- based 

routing approaches. This enhanced state 

representation allows the reinforcement 

learning agent to generalize routing 

decisions across varying network densities 

and traffic conditions. 

One of the key strengths of the proposed 

framework is its ability to balance energy 

consumption across sensor nodes. By 

explicitly incorporating energy balance 

into the reward function, the routing policy 

avoids overusing specific relay nodes, 

which is a common limitation in shortest- 

path and chain-based routing protocols. 

This balanced energy usage directly 

contributes to the observed improvements 

in first-node-death time and overall 

network lifetime. 

The federated learning strategy plays a 

critical role in ensuring scalability. Rather 

than relying on centralized training or 

frequent global state exchanges, federate 

aggregation allows clusters to train locally 

while still benefiting from shared 

knowledge. This approach significantly 

reduces communication overhead and 

makes the framework practical for large- 

scale deployments. The control overhead 

introduced by model updates remains 

modest relative to the performance gains 

achieved. 

Despite its  advantages,   the proposed 

methodintroducesadditional computational 

complexity compared to classical routing 

protocols. However, the use of lightweight 

GNN architectures and periodic training 

schedules   ensures that  the  approach 

remains feasible for resource- constrained 

sensor nodes. Moreover, training can be 

performed offline or at the sink, further 

mitigating on-node computational burden. 

Overall, the results suggest that learning- 

based routing strategies, when carefully 

designed  for  energy efficiency and 

scalability, offer a promising alternative to 

traditional WSN routing protocols. The 

proposedframeworkdemonstratesrobustnes 

s under diverse network conditions and 

provides a strong foundation for future 

intelligent WSN deployments. 

 

Conclusion 

This study presented an AI-driven energy- 

efficient routing framework for large-scale 

wirelesssensornetworks,integrating 

graphneural  networks   with  deep 

reinforcement learning to optimize routing 

decisions and extend network lifetime. By 

capturing both topological structure and 

dynamic energy  states, the  proposed 

approach enables intelligent, adaptive path 

selection that outperforms conventional 

routing protocols  in terms of energy 

efficiency,   packet   delivery   ratio,  and 

latency. Simulation results confirm that 

the proposed  framework    significantly 

prolongs network lifetime by balancing 

energy consumption among sensor nodes 

and avoiding energy hotspots commonly 

observed in shortest-path and cluster- 

based routing   schemes.  The  use  of 

federated  learning   further   enhances 

scalability and privacy by enabling 

decentralized training without excessive 

communication overhead. Even in dense 

http://www.ijmsrt.com/
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and high-traffic scenarios, the framework 

maintains reliable data delivery and low 

end-to-end delay. 

From a practical perspective, the 

framework is well suited for real-world 

deployments such as environmental 

monitoring, smart agriculture, and 

industrial Internet of Things applications, 

where long-term sustainability and 

minimal maintenance are critical. 

Although the approach introduces 

additional computational overhead 

compared to traditional protocols, the use 

of lightweight learning models and 

periodic updates ensures feasibility on 

resource-constrained sensor nodes. 

Future research may focus on 

incorporating mobility-aware routing to 

support mobile sinks and sensor nodes, as 

well as extending the framework to 

heterogeneous sensor networks with 

varying hardware capabilities. 

Additionally, integrating energy harvesting 

models and security- aware routing 

objectives could further enhance network 

robustness.  Real-world  testbed 

implementations and hardware-in-the-loop 

experiments would also be valuable for 

validating the framework under practical 

deployment conditions. 
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