

A Review on Solar-Powered AI-Integrated Smart Vehicle System for Alcohol Detection and Driver Health Monitoring

Pratiksha Dhopre¹ Dr. Diwakar Ramanuj Tripathi² and Shambhavi Holay
Electronics and Computer Science Department, RTMNU, India

Abstract

Road safety is a major global problem, with alcohol-impaired and drowsy driving significantly contributing to traffic accidents and fatalities. This paper proposes a solar-powered, AI-integrated smart vehicle system designed to detect alcohol consumption, driver drowsiness, and potential accidents in real-time, utilizing an alcohol sensor, Arduino microcontroller, GPS, GSM modules, engine locking mechanism, and wearable biosensors. Leveraging solar energy ensures sustainable and continuous system operation, enhancing the eco-friendliness of the vehicle. Furthermore, artificial intelligence algorithms analyze sensor data to provide predictive safety interventions. Recent advancements in intelligent driver health monitoring, accident detection, and vehicle tracking are discussed. The review identifies major challenges and proposes feasible, futuristic solutions towards creating a sustainable, AI-supported vehicular ecosystem.

Keywords: Alcohol detection, Driver drowsiness detection, GSM, GPS, Drunk driving prevention.

1. Introduction

Every year, about 1.35 million people die in road accidents, according to the World Health Organization (WHO). A large number of these accidents happen because drivers are under the influence of alcohol or are too tired to drive safely.

Even though there are many road safety programs and strict traffic laws, they have not been enough to stop these accidents completely.

Because of this, there is a strong need for smart systems that can automatically check the driver's condition and the vehicle's status while driving.

This paper talks about a new system that uses solar energy and artificial intelligence (AI) to make vehicles safer. The system can detect if the driver has consumed alcohol, is feeling sleepy, or if an accident has happened. It can also send live alerts using GPS and GSM technology.

2. Objectives

In the face of strict traffic regulations and safety campaigns, the rate of accidents caused by alcohol-impaired and tiredness driving remains critically high. Human error and delayed decision-making contribute to the failure of conventional vehicle safety systems. There is an urgent need for an intelligent, automated system capable of real-time driver state assessment, accident prediction, and emergency response. Such a system should be sustainable, diagnostic and adaptable to various vehicle types, enhancing safety while promoting environmental responsibility.

3. System Components

3.1 Alcohol Detection Sensor

An MQ-3 sensor detects ethanol concentration in the driver's breath. If alcohol is detected above the safe limit (e.g., 0.08% BAC), the engine is automatically disable, and alerts are triggered.

3.2 Arduino Microcontroller

Arduino UNO acts as the central control unit, processing data from all sensors and executing programmed decisions based on input conditions.

3.3 GPS and GSM Modules

- **GPS** tracks the real-time vehicle location.
- **GSM** sends SMS alerts containing location and status updates to emergency contacts or law enforcement.

3.4 Driver Drowsiness Detection

Infrared-based or camera-based sensors monitor:

- Eye blink rate
- Head tilts
- Yawning patterns

If drowsiness indicators are detected, audible and visual warnings are activated.

3.5 Vibration and Pressure Sensors

Detect sudden impacts or collisions and immediately trigger emergency response protocols.

3.6 Heart Rate Monitoring

Wearable biosensors (e.g., smartwatches, chest straps) track the driver's pulse, enabling health-based accident prediction such as heart attacks while driving.

3.7 Solar Power Integration

Solar panels provide an eco-friendly power source ensuring continuous operation of all components, even when the engine is off.

4. System Architecture

The system architecture of this IoT-based accident prevention and detection project consists of multiple sensors and components to assure driver safety and offer real-time notifications in the event of an emergency. At its heart is the Arduino UNO microcontroller, which acts as the central processing unit, collecting and processing data from a variety of sensors, including a pressure sensor for detecting accidents. The power supply unit guarantees that all components receive consistent power throughout operation.

The system includes a sleepiness detection module that uses an infrared sensor to scan the driver's eyes and head movements for indicators of fatigue. An alcohol detection sensor (MQ-3) examines the driver's breath for evidence of alcohol. If either of these sensors detects impairment, the system sounds a buzzer to inform the driver, and the motor driver shuts the vehicle's engine to prevent further movement.

In the event of a collision, the pressure sensor detects sudden impacts on the car and sends signals to the Arduino, which subsequently initiates the accident reaction. The GSM module rapidly delivers SMS notifications to pre-configured emergency contacts, including critical information like accident detection and vehicle location, which is tracked by the GPS module. This real-time communication improves emergency response by delivering immediate information about the accident's location and severity.

4.1 Arduino UNO (Microcontroller):

The Arduino UNO (Microcontroller) features a central processing unit. The Arduino UNO serves as the system's brain, processing sensor data and making programmed decisions.

Roles:

- Collects data from sensors, including alcohol, drowsiness, and accidents.
- Runs algorithms to determine the driver's state and the status of the car.

Triggers appropriate reactions, such as SMS alerts, engine control, and buzzer activation.

4.2 Sensors:

a) Drowsiness Detection Module:

- **Type:** Infrared camera or ordinary camera.
- **Role:** Constantly watches the driver's eye movements, head tilts, and facial expressions for indicators of weariness.
- **Output:** If drowsiness is detected (e.g., closing the eyes for more than a few seconds), a signal is sent to the Arduino.

b) Alcohol Detection Sensor:

- **Type:** Sensor for alcohol gas.
- **Function:** Measures blood alcohol content (BAC) by detecting alcohol vapor in the driver's breath.
- **Output:** If alcohol is detected above a specific level (e.g., 0.08% BAC), a signal is sent to the Arduino, which triggers alarms or disables the vehicle's engine.

c) Accident Detection Sensor:

- **Type:** Pressure sensor (such as the Flexiforce Pressure Sensor).
- **Role:** Detects sudden impact or abnormal pressure levels on the vehicle's body (which indicate a collision).
- **Output:** Alerts the microcontroller when pressure exceeds a specified threshold, signaling a potential accident.

d) GSM Module:

- **Type:** GSM SIM900A or Equivalent.
- **Role:** Sends SMS alerts to emergency contacts when an accident occurs or any Problem is occurs.
- **Output:** Sends real-time messages with accident and location information.

e) GPS Module:

- **Type:** GPS Module (NEO-6M or similar)
- **Role:** Monitors the vehicle's location, particularly during accidents.
- **Output:** Sends GPS coordinates to the Arduino, which are included in SMS warnings provided by the GSM module.

f) Buzzer:

- **Type:** Piezoelectric buzzer.
- **Role:** Alerts when alcohol is found or signs of drowsiness are observed.
- **Output:** An audible alert that notifies the driver and passengers.

g) Motor Driver and Vehicle Engine Control:

- **Type:** Motor driver IC (e.g., L298N).
- **Role:** Controls the state of the vehicle's engine.
- **Output:** The engine is disabled if alcohol or drowsiness is detected, preventing further vehicle operation.

h) Power Supply:

- **Type:** Typically, a 12V DC power supply or battery.
- **Role:** Ensures that all components (microcontroller, sensors, and communication modules) work properly.
- **Purpose:** Provides electrical power to all system component.

Flow Chart:**Fig: Flow Diagram of Accident Prevention & Detection System****Advantages**

1. **Enhanced Road Safety:** The system detects alcohol and tiredness, preventing impaired driving and lowering the risk of accidents.
2. **Real-Time Monitoring:** The system continuously analyzes the driver's condition, including alcohol and tiredness, and gives real-time feedback to maintain safe driving behavior.

3. **Accident Detection:** The technology identifies accidents and sends timely alerts, allowing for faster rescue operations.
4. **Automated Engine Control:** The technology can shut the car's engine if the driver is impaired by alcohol or fatigue, preventing unsafe driving.
5. **Emergency Alert System:** When an accident occurs, the system provides real-time notifications to emergency contacts or authorities, allowing for faster medical aid.

5. Overview

This review paper presents a comprehensive evaluation of a solar-powered, AI-integrated vehicular system designed to address road safety challenges. The system's core functionality revolves around alcohol detection, driver drowsiness monitoring, accident detection, and real-time emergency communication, all powered by solar energy for sustainable operation. Using embedded systems like Arduino and sensors such as MQ-3 and IR modules, the design combines existing technologies with innovative safety mechanisms. The paper compares current approaches, highlights implementation gaps, and proposes future-ready enhancements including AI models, wearable biosensors, and secure cloud or blockchain-based data handling.

6. Advance Features and Components

Building on the existing literature, several advanced features are proposed:

Feature	Description
Machine Learning for Fatigue Prediction	Train AI models on blink rate, yawning patterns, and driving behavior for predictive fatigue warnings.
Cloud Connectivity	Real-time sensor data backup and accident event reporting via cloud storage.
Vehicle-to-Infrastructure (V2I) Communication	Alert nearby smart traffic systems automatically when an accident or drunk driving event occurs.
Blockchain for Data Integrity	Secure accident records using blockchain technology to ensure evidence authenticity during insurance claims.
Health Emergency Detection	Use biosensors to detect cardiac arrest or other medical emergencies while driving, automatically stopping the vehicle safely.

7. Challenges and Solutions

Challenge	Solution
Power Management	Solar-powered battery backup with energy harvesting techniques.
False Positives in Alcohol Detection	Cross-validation with multiple sensors and machine learning models.
Data Security	End-to-end encryption of driver and event data transmissions.
System Scalability	Modular design for different vehicle types (2-wheelers, 4-wheelers, trucks).

8. Conclusion

The integration of solar energy, AI, IoT sensors, and wireless communication technologies into vehicles offers a comprehensive solution for accident prevention and driver safety. The proposed smart vehicle system not only addresses immediate risks like drunk driving and drowsiness but also anticipates future incidents through predictive analysis. By focusing on eco-friendliness and sustainability, the system sets a new benchmark for intelligent transportation systems.

Continued research into machine learning, wearable biosensing, and blockchain security will further enhance the robustness and effectiveness of future smart vehicular ecosystems.

9. References

1. Sai Krishna Paruchuri, Daniel Paul, "Driver Drowsiness Detection System," Masters Thesis, SUNY at Binghamton, 2020.
2. Vaishali Shrivastava, Manasi Gyanchandani, "A Review Paper on Pre and Post Accident Detection and Alert System," MANIT Bhopal, India, 2022.
3. Dr. D. Karunkuzhali, et al., "Accident Detection and Monitoring System Using IoT," Panimalar Engineering College, Chennai, 2021.
4. Unaiza Alvi, et al., "A Comprehensive Study on IoT Based Accident Detection Systems," IEEE, 2021.
5. M. Navya Sri, et al., "Vehicle Tracking and Alcohol Detector with Engine Locking System," Malla Reddy Engineering College for Women, Hyderabad, 2021.
6. Dimitrios Zavantis, Dimitrios Mandalozis, Ansar Yasar, Lumbarda Hasimi, "Automatic Accident Detection System Using IoT Compared to the Systems that a Traffic Centre Uses for Accident Detection", Procedia Computer Science, Volume 231, 2024, Pages 16-23, ISSN 1877-0509
7. Gupta, Anurag & Yadav, Darshan & Raj, Akash & Pathak, Ayushman, (2023), " Real-Time Object Detection Using SSD MobileNet Model of Machine Learning", International Journal of Engineering and Computer Science. 12. 25729-25734.
8. Mohammed Qader Kheder, Aree Ali Mohammed, "Real-time traffic monitoring system using IoT-aided robotics and deep learning techniques", Kuwait Journal of Science, Volume 51, Issue 1, 2024, 100153, ISSN 2307-4108.
9. A. Bhakat, N. Chahar and V. Vijayasherly, "Vehicle Accident Detection & Alert System using IoT and Artificial Intelligence," 2021 Asian Conference on Innovation in Technology (ASIANCON), PUNE, India, 2021, pp. 1-7
10. Khan, Md & Howlader, Md., "Design of An Intelligent Autonomous Accident Prevention, Detection and Vehicle Monitoring System", 2019 Conference IEEE International, 40-42.
11. S. Fernandez, R. Palanisamy and K. Vijayakumar, "GPS & GSM Based Accident Detection and Auto Intimation", Indonesian Journal of Electrical Engineering and Computer Science, vol. 11, no. 1, pp. 356, 2018.
12. S. Sonika, K. Sathiyasekar and S. Jaishree, "Intelligent accident identification system using GPS GSM modem", International Journal of Advanced Research in Computer and Communication Engineering, vol. 3, no. 2, 2014.
13. Salas K. Jose, X. Anitha Mary and Namitha Mathew, "Arm 7 based accident alert and vehicle tracking system", International Journal of Innovative Technology and Exploring Engineering (IJITEE), vol. 2, no. 4, 2013.
14. Amin, M.S.; Bhuiyan, M.A.S.; Reaz, M.B.I.; Nasir, S.S., "GPS and Map Matching Based Vehicle Accident Detection System", In Proceedings of the IEEE Student Conference on Research and Developement, Putrajaya, Malaysia, 16–17 December 2013; pp. 520–523.
15. Reddy, M.; Tulasi, J., "Accident detection depending on the vehicle position and vehicle theft tracking, reporting systems". Int. J. Sci. Eng. Technol. Res. **2014**, 3, 2359–2362.
16. Ali, H.M.; Alwan, Z.S, "Car Accident Detection and Notification System Using Smartphone", Int. J. Comput. Sci. Mob. Comput. **2015**, 4, 620–635.
17. D. Viswanath, K. Preethi, R. Nandini and R. Bhuvaneshwari, "A road accident prediction model using data mining techniques", 2021 5th International Conference on Computing Methodologies and Communication (ICCMC), pp. 1618-1623, 2021, April.
18. C. Kaliraja, D. Chitra devi and A. Rajan, "Predictive Analytics of Road Accidents Using Machine Learning", 2022 2nd International Conference on Advance Computing and Innovative Technologies in Engineering (ICACITE), pp. 1782-1786, 2022, April.
19. P. Pachaivannan, R.H. Ranganathan, P.N. Elamparithi and R. Dhanagopal, "Indian Road Conditions and Accident Risk Predictions using Deep Learning Approach-A Review", 2020 3rd International Conference on Intelligent Sustainable Systems (ICISS), pp. 199-202, 2020, December.