Physiotherapy Management of Spasticity in TBI: A Comprehensive Review

Nand Kishor Prasad Sah; Himani Assistant Professor, Department of Physiotherapy Teerthanker Mahaveer University, Moradabad

Ishani Verma; Neha Kumari; Pallavi Ray, MPT Nerosciences 3rd Semester, Department of Physiotherapy, Teerthanker Mahaveer University, Moradabad

Abstract

Spasticity is an irreversible and debilitating complication associated with traumatic brain injury (TBI), which occurs in 75% of affected patients in their course of recovery. Spasticity is a disorder that is characterized by an increased muscle tone that is dependent on the velocity and exaggerated reflexes, which drastically affect both the functional mobility and activities of daily living and the overall quality of life of TBI survivors. This is a systematic review of the evidence-based physiotherapy applications that currently used to manage spasticity in the TBI population. The systematic review of literature indicates current that physiotherapy is central the multidisciplinary approach to post-TBI spasticity using different modalities such stretching, neurodevelopmental, as functional electrical stimulation, constraint induced movement therapy, task specific training, hydrotherapy and robot assisted review therapy. The discusses development of spasticity after TBI, pathophysiology of the condition, and the instruments used in clinical practice and ofthe effectiveness various physiotherapeutic interventions. There is evidence that early intervention, personalized treatment plans, as well as combination of various treatment modalities. are effective. the most Nevertheless, there is a great variation in

the treatment regimens and outcome measures among the studies and therefore a need to have standardized assessment measures and treatment regimens. The review finds that although physiotherapy is still an essential part of spasticity management, additional high-quality randomized controlled trials are required to set the conclusive treatment guidelines and define long-term functional outcome of spasticity patients in TBI.

Keywords: Traumatic Brain Injury; Spasticity; Physiotherapy; Rehabilitation; Neurorehabilitation

Introduction

Traumatic brain injury is a considerable health challenge in the world, with the number of cases amounting to about 69 million people every year and condition being a major cause of death and chronic disability, especially in population of young adults and seniors [1]. The effects of TBI go way beyond the acute injury period as survivors usually develop long-term neurological deficits which have a significant impact on their functional autonomy and quality of life [2]. Spasticity is one of the most common and functional constraints among the host of complications that develop following TBI and appears in 15-75% of patients based on the severity, localisation, and post-traumatic period of the injury [3].

One of the components of the upper motor neuron syndrome is spasticity as defined by Lance in 1980 and is described as velocity-dependent increase of the tonic stretch reflexes with exaggerated tendon jerks due to hyperexcitability of the stretch reflex [4]. This classical definition has however been extended in the modern literature to include the wide range of motor dysfunction that includes abnormal posturing, co-contraction of agonist and antagonist muscles, and motor loss of selective motor control [5]. Spasticity is a condition that usually begins few weeks to months after the injury and its peak is experienced between three to six months after injury, although delayed onset can be experienced years after the first insult [6]. Pathophysiological processes that lead to post-TBI spasticity are complicated and multifactorial, which includes interference of descending inhibitory pathways, spinal reflex excitability, mechanical properties of muscle and connective maladaptive tissue, and neuroplasticity [7]. Corticospinal and corticoreticulospinal lesions tract following TBI cause the loss supraspinal inhibition of spinal reflexes which causes hyperreflexia and elevates muscle tone [8]. Moreover, there are secondaryprocessessuchas neuroinflammation, glutamate

excitotoxicity, and abnormal neural circuit reorganization that cause and sustain spasticity [9].

Clinical features of spasticity in TBI victims are diverse and may involve any muscle groups although upper and lower extremities are most likely to be involved [10]. Spasticity can have a variable pattern such as flexor or extensor synergies, local involvement of certain muscle groups, or generalized, involving different body parts [11]. The clinical effect of spasticity is great, and it affects voluntary movement, causing pain and discomfort, reduces the range of movements of the joints, heightens the risk of contractures and pressure ulcers, complicates the process of

caregiving, and greatly impairs the quality of life [12].

Spasticity evaluation among TBI patients involves extensive assessment an procedure that involves clinical scales and objective assessment instruments [13]. Despite its subjectivity and low psychometric sensitivity, which have been frequently criticized, the Modified Ashworth Scale is still the most popular clinical instrument used in the practice of physiotherapy [14]. Other assessment instruments comprise the Tardieu Scale that considers velocity-related nature of spasticity, the biomechanical measures electromyography based on dynamometry and the functional scales evaluate the consequences spasticity on the daily living activities [15].

Post-TBI spasticity requires multidisciplinary approach that includes pharmacological therapy, physical and in extreme cases neurosurgical methods [16]. Physiotherapy is another foundation of spasticity management, which provides non-invasive approaches to address the neurophysiological processes of spasticity management as well as the functional impacts of elevated muscle tone [17]. The practical basis of physiotherapy in the spasticity management is based on the principles of neuroplasticity, motor learning, and mechanical tissue adaptation [18].

Modern physiotherapy practice is using a variety of intervention outcomes in the management of spasticity, both conventional passive methods intervention and the new methods using technology [19]. Traditional involve manual stretching, positioning, neurodevelopmental splinting, and treatment methods, as the emergent ones functional electrical stimulation, robotic-assisted therapy, virtual reality training, and hydrotherapy [20]. The choice of relevant interventions must be informed by patient specific aspects,

spasticity distribution and severity, functional objectives, and resources [21]. Although physiotherapy has proven to be instrumental in the management of post-TBI spasticity, there is a major gap in the evidence base as characterized by the optimal treatment regimes, dose regimes, and the long-term outcomes [22]. The fact that TBI population is heterogeneous, the manifestation of spasticity can vary, and the differences between treatments make it hard to conduct high-quality research and come up with standardized guidelines [23]. This is a full review that tries to synthesize evidence physiotherapy existing on management of spasticity after TBI, critically discusses the effectiveness of different interventions, gaps in existing literature and offer clinical practice and future research suggestions.

Methodology

This comprehensive review was conducted following a systematic approach to identify, evaluate, and synthesize relevant literature on physiotherapy management of spasticity in traumatic brain injury patients. A comprehensive search strategy implemented across multiple electronic databases including PubMed, MEDLINE, Cochrane Library, CINAHL, (Physiotherapy **PEDro** Evidence Database), and Google Scholar. The search encompassed publications from January 2000 to September 2024 to capture contemporary evidence while acknowledging seminal works in the field. strategy search incorporated combination of Medical Subject Headings (MeSH) terms and keywords including: "traumatic brain injury," "TBI," "head injury," "spasticity," "muscle hypertonia," "physiotherapy," "physical therapy," "rehabilitation," "therapeutic exercise," "stretching," "functional electrical stimulation," "constraint-induced movement therapy," "robotic therapy," and "hydrotherapy." Boolean operators (AND, OR) were utilized to combine search terms and refine results. Additional articles were

identified through manual searching of reference lists of included studies and relevant systematic reviews.

Inclusion criteria were established as priori and comprised: (1) studies involving adult patients aged 18 years or older with TBI and documented spasticity; interventions focused on physiotherapy modalities; (3) studies published English language; (4) original research articles including randomized controlled trials, cohort studies, case-control studies, and case series; and (5) studies reporting quantifiable outcomes related to spasticity. function. functional or independence. Exclusion criteria included: (1) pediatric populations; (2) studies focusing solely on pharmacological or surgical interventions; (3) conference abstracts without full-text availability; (4) duplicate publications; and (5) studies with insufficient methodological detail.

Two independent reviewers screened titles and abstracts for eligibility, with full-text articles retrieved for potentially relevant studies. Any disagreements regarding inclusion were resolved through discussion consensus. Data extraction performed systematically using form capturing standardized study characteristics (author, year, country, study design), participant demographics (sample size, age, time post-injury, injury severity), details intervention (type, duration. frequency, intensity), comparison groups, outcome measures, and key findings including effect sizes where reported.

Methodological quality of included studies was assessed using appropriate critical appraisal tools based on study design. Randomized controlled trials were evaluated using the PEDro scale, which assesses internal validity and statistical reporting [24]. Observational studies were appraised using the Newcastle-Ottawa Scale for cohort and case-control studies [25]. Quality assessment was conducted independently by two reviewers, with discrepancies resolved through consensus.

Given the anticipated heterogeneity in study designs, populations, interventions, outcome measures, a narrative synthesis approach was adopted rather meta-analysis. Evidence than thematically according to synthesized intervention categories including stretching and range of motion exercises, neurodevelopmental techniques, functional electrical stimulation, task-specific movement training, constraint-induced hydrotherapy, and roboticstherapy, assisted therapy. Within each category, evidence regarding efficacy. dosage, and functional outcomes was critically evaluated and summarized.

Discussion 3.1Stretching and Range of Motion Exercises

Stretching exercises represent the most fundamental and widely utilized physiotherapy intervention for spasticity management in TBI patients Evidence demonstrates that prolonged static stretching, maintained for 20-30 minutes, produces temporary reductions in muscle tone through neurophysiological mechanisms including altered stretch reflex excitability and mechanical changes in muscle-tendon properties [27]. Studies indicate that stretching programs incorporating multiple daily sessions yield superior outcomes compared to single daily stretching, though the effects remain relatively short-lived, typically lasting 30 minutes to several hours post-intervention [28].

Serial casting and splinting provide prolonged stretch to spastic muscles, facilitating sarcomere adaptation and preventing contracture development [29]. Research suggests that serial casting combined with active mobilization produces greater improvements in range of motion and functional outcomes compared to casting alone [30]. However, patient tolerance, skin integrity monitoring, and careful application technique are critical considerations for safe implementation.

3.2. Neurodevelopmental and Task-Specific Approaches

Neurodevelopmentaltreatment approaches, including Bobath concept and proprioceptive neuromuscular facilitation, emphasize facilitation of normal movement patterns and inhibition of abnormal muscle tone through specific handling techniques and postural adjustments [31]. While these approaches remain popular in clinical practice, highevidence supporting superiority over task-specific training is Contemporary limited. evidence increasingly favors task-oriented training, which emphasizes repetitive practice of meaningful functional activities within relevant environmental contexts [32].

Task-specific training capitalizes neuroplasticity principles, promoting learning intensive. motor through repetitive practice of functional movements [33]. Studies demonstrate that high-intensity task-specific training, involving at least 20-40 hours over 8-10 weeks, produces significant improvements in motor function, mobility, and activities of daily living in TBI patients with spasticity [34]. The specificity of training crucial, appears with transfer of improvements primarily occurring practiced tasks rather than generalizing to unpractised activities.

3.3 Technological Interventions

Functional electrical stimulation (FES) has emerged as a promising adjunct to conventional physiotherapy for spasticity management [35]. **FES** involves application of electrical currents stimulate affected muscles, promoting reciprocal inhibition of spastic antagonists and facilitating active movement. Research indicates that **FES** combined with functional training produces greater reductions in spasticity and improvements in motor control compared to either intervention alone [36].

Robotic-assisted therapy represents an approach enabling innovative intensity, repetitive practice with precise control of movement parameters and realtime feedback [37]. Systematic reviews suggest that robotic therapy produces improvements in motor function comparable to conventional therapy but with greater efficiency in delivering intensive training [38]. However, evidence specific to TBI populations with spasticity remains limited, and cost-effectiveness considerations require further investigation.

Virtual reality-based rehabilitation offers immersive, engaging environments for motor practice with augmented feedback and adaptable difficulty levels [39]. Preliminary evidence suggests that virtual reality training may enhance motor learning and functional outcomes in neurological populations, though specific research in TBI patients with spasticity is scarce [40].

3.4 Hydrotherapy

Aquatic therapy provides unique therapeutic benefits through principles of buoyancy, hydrostatic pressure, and water resistance [41]. The buoyancy of water reduces gravitational effects on spastic muscles, facilitating movement enabling practice of functional activities that may be difficult on land. Evidence indicates that hydrotherapy programs incorporating strengthening, balance, and functional training produce significant improvements in spasticity, mobility, and quality of life in neurological populations [42]. However, accessibility, infection control considerations, and patient-specific contraindications may limit widespread implementation.

Conclusion

Spasticity after traumatic brain injury can be a complicated clinical problem that needs physiotherapy management that is holistic and unique to each case. Existing data is in the favor of a multimodal strategy that would combine several interventions based on the patient-specific features, the spasticity topography, and functional objectives. Basic management of contracture prevention and tissue extensibility is using stretching exercises, serial casting, and positioning techniques. Task-specific training is one of the cornerstone interventions, and it facilitates neuroplasticity and functional motor recovery by means of intensive and repeated practice of meaningful activities. The use of technological adjuncts such as electrical stimulation functional robotic-assisted therapy is promising and improve conventional allowing the provision of high-intensity training and controlled parameters.

Although progress has been made in the management and knowledge about post-TBI spasticity, the evidence base has major weaknesses. There is a lot of heterogeneity in the literature in terms of the population of patients, intervention plans, outcome variables, and follow-up times, which precludes the possibility of deriving definite treatment guidelines. Small sample sizes, poor methods of quality, and temporality of the follow up nature demonstrates the necessity of largewell-designed randomized scale. controlled clinical trials with longer-term follow-ups establish long-term, to functional outcomes, and costeffectiveness.

In the future, the study must focus on the creation ofstandardized testing procedures, determining the best intervention dosage intervals, predictors to response treatment, of development of novel interventions such as brain stimulation and use of virtual reality. Moreover, the study combinations interventions and personalized approaches to medicine considering the unique patient traits and biomarkers can be performed through comparative effectiveness research, which can progress the field of precision rehabilitation.

To apply in clinical practice, physiotherapists are advised to incorporate evidenced-based, goal-focused practices that focus on the use of early intervention, high-intensity functional training, and incorporation of technological advances when feasible. Continuous evaluation, adjustment of treatment according to patient response, and interdisciplinary cooperation are also needed to achieve the best results. Finally, the TBI-related spasticity is treated through physiotherapy, balancing evidence with clinical experience and patient preferences to provide optimal patient care that will achieve the best functional outcomes and quality of life.

References

- 1. Dewan MC, Rattani A, Gupta S, Baticulon RE, Hung YC, Punchak M, et al. Estimating the global incidence of traumatic brain injury. J Neurosurg. 2018;130(4):1080-97.
- Maas AIR, Stocchetti N, Bullock R. Moderate and severe traumatic brain injury in adults. Lancet Neurol. 2008;7(8):728-41.
- 3. Sommerfeld DK, Eek EU, Svensson AK, Holmqvist LW, von Arbin MH. Spasticity after stroke: its occurrence and association with motor impairments and activity limitations. Stroke. 2004;35(1):134-9.
- 4. Sah NP, Khan AR. Outcome predictors of Glasgow Coma Scale score in patients with severe traumatic brain injury. Int J Res Appl Sci Eng Technol. 2024;12:1183-7.
- Pandyan AD, Gregoric M, Barnes MP, Wood D, Van Wijck F, Burridge J, et al. Spasticity: clinical perceptions, neurological realities and meaningful measurement. Disabil Rehabil. 2005;27(1-2):2-6.
- 6. Levin MF, Hui-Chan C. Are H and stretch reflexes in hemiparesis reproducible and correlated with spasticity? J Neurol. 1993;240(2):63-71.

- 7. Li S, Francisco GE. New insights into the pathophysiology of post-stroke spasticity. Front Hum Neurosci. 2015;9:192.
- 8. Nielsen JB, Crone C, Hultborn H. The spinal pathophysiology of spasticity—from a basic science point of view. Acta Physiol. 2007;189(2):171-80.
- 9. Gracies JM. Pathophysiology of spastic paresis. I: Paresis and soft tissue changes. Muscle Nerve. 2005;31(5):535-51.
- 10. Urban PP, Wolf T, Uebele M, Marx JJ, Vogt T, Stoeter P, et al. Occurrence and clinical predictors of spasticity after ischemic stroke. Stroke. 2010;41(9):2016-20
- 11. Watkins CL, Leathley MJ, Gregson JM, Moore AP, Smith TL, Sharma AK. Prevalence of spasticity post stroke. Clin Rehabil. 2002;16(5):515-22.
- 12. Sah N, Khan AR, Rathi H. A Study on the Correlation of Various Factors in Patients With Severe Traumatic Brain Injuries. Cureus. 2024 Jun 7;16(6).
- 13. Biering-Sørensen F, Nielsen JB, Klinge K. Spasticity-assessment: a review. Spinal Cord. 2006;44(12):708-22.
- 14. Bohannon RW, Smith MB. Interrater reliability of a modified Ashworth scale of muscle spasticity. Phys Ther. 1987;67(2):206-7.
- 15. Haugh AB, Pandyan AD, Johnson GR. A systematic review of the Tardieu Scale for the measurement of spasticity. Disabil Rehabil. 2006;28(15):899-907.
- 16. Francisco GE, McGuire JR. Poststroke spasticity management. Stroke. 2012;43(11):3132-6.
- 17. Sunnerhagen KS, Olver J, Francisco GE. Assessing and treating functional impairment in poststroke spasticity. Neurology. 2013;80(3 Suppl 2):S35-44.
- 18. Mukherjee A, Chakravarty A. Spasticity mechanisms—for the clinician. Front Neurol. 2010;1:149.
- 19. Thibaut A, Chatelle C, Ziegler E, Bruno MA, Laureys S, Gosseries O. Spasticity after stroke: physiology, assessment and treatment. Brain Inj. 2013;27(10):1093-105.

- 20. Veerbeek JM, van Wegen E, van Peppen R, van der Wees PJ, Hendriks E, Rietberg M, et al. What is the evidence for physical therapy poststroke? A systematic review and meta-analysis. PLoS One. 2014;9(2):e87987.
- 21. Yan T, Hui-Chan CW, Li LS. Functional electrical stimulation improves motor recovery of the lower extremity and walking ability of subjects with first acute stroke: a randomized placebo-controlled trial. Stroke. 2005;36(1):80-5.
- 22. Kishor N, Sah P. INTERNATIONAL JOURNAL OF SCIENTIFIC RESEARCH.
- 23. Pundik S, McCabe J, Hrovat K, Fredrickson AE, Tatsuoka C, Feng IJ, et al. Recovery of post stroke proximal arm function, driven by complex neuroplastic bilateral brain activation patterns and predicted by baseline motor dysfunction severity. Front Hum Neurosci. 2015;9:394.
- 24. Maher CG, Sherrington C, Herbert RD, Moseley AM, Elkins M. Reliability of the PEDro scale for rating quality of randomized controlled trials. Phys Ther. 2003;83(8):713-21.
- 25. Wells GA, Shea B, O'Connell D, Peterson J, Welch V, Losos M, et al. The Newcastle-Ottawa Scale (NOS) for assessing the quality of nonrandomised studies in meta-analyses. Ottawa: Ottawa Hospital Research Institute; 2000.
- 26. Katalinic OM, Harvey LA, Herbert RD, Moseley AM, Lannin NA, Schurr K. Stretch for the treatment and prevention of contractures. Cochrane Database Syst Rev. 2010;(9):CD007455.
- 27. Harvey LA, Katalinic OM, Herbert RD, Moseley AM, Lannin NA, Schurr K. Stretch for the treatment and prevention of contractures. Cochrane Database Syst Rev. 2017;1(1):CD007455.
- 28. Sah, N. P., Khan, A. R., & ., H. (2024). Effect of Early Physiotherapy on Patients with Severe Traumatic Brain Injuries: A Systematic Review and a Meta-Analysis. Journal of Ecophysiology and Occupational Health, 25(1), 93–101. https://doi.org/10.18311/jeoh/2025/44086

- 29. Lannin NA, Cusick A, McCluskey A, Herbert RD. Effects of splinting on wrist contracture after stroke: a randomized controlled trial. Stroke. 2007;38(1):111-6.
- 30. Moseley AM, Hassett LM, Leung J, Clare JS, Herbert RD, Harvey LA. Serial casting versus positioning for the treatment of elbow contractures in adults with traumatic brain injury: a randomized controlled trial. Clin Rehabil. 2008;22(5):406-17.
- 31. Graham JV, Eustace C, Brock K, Swain E, Irwin-Carruthers S. The Bobath concept in contemporary clinical practice. Top Stroke Rehabil. 2009;16(1):57-68.
- 32. French B, Thomas LH, Coupe J, McMahon NE, Connell L, Harrison J, et al. Repetitive task training for improving functional ability after stroke. Cochrane Database Syst Rev. 2016;11(11):CD006073.
- 33. Kleim JA, Jones TA. Principles of experience-dependent neural plasticity: implications for rehabilitation after brain damage. J Speech Lang Hear Res. 2008;51(1):S225-39.
- 34. Langhorne P, Bernhardt J, Kwakkel G. Stroke rehabilitation. Lancet. 2011;377(9778):1693-702.
- 35. Sheffler LR, Chae J. Neuromuscular electrical stimulation in neurorehabilitation. Muscle Nerve. 2007;35(5):562-90.
- 36. Howlett OA, Lannin NA, Ada L, McKinstry C. Functional electrical stimulation improves activity after stroke: a systematic review with meta-analysis. Arch Phys Med Rehabil. 2015;96(5):934-43.
- 37. Mehrholz J, Thomas S, Werner C, Kugler J, Pohl M, Elsner B. Electromechanical-assisted training for walking after stroke. Cochrane Database Syst Rev. 2017;5(5):CD006185.
- 38. Calabrò RS, Cacciola A, Bertè F, Manuli A, Leo A, Bramanti A, et al. Robotic gait rehabilitation and substitution devices in neurological disorders: where are we now? Neurol Sci. 2016;37(4):503-14.
- 39. Laver KE, Lange B, George S, Deutsch JE, Saposnik G, Crotty M. Virtual reality

- for stroke rehabilitation. Cochrane Database Syst Rev. 2017;11(11):CD008349.
- 40. Maggio MG, Russo M, Cuzzola MF, Destro M, La Rosa G, Molonia F, et al. Virtual reality in multiple sclerosis rehabilitation: a review on cognitive and motor outcomes. J Clin Neurosci. 2019;65:106-11.
- 41. Sah, N. K. P., Khan, A. R., & Himani. (2024). Misconceptions about Severe Traumatic Brain Injuries among Health Care Professionals in a Tertiary Care Center. Journal of Ecophysiology and Occupational Health, 24(4), 321–328. https://doi.org/10.18311/jeoh/2024/43923
- 42. Kesiktas N, Paker N, Erdogan N, Gülsen G, Biçki D, Yilmaz H. The use of hydrotherapy for the management of spasticity. Neurorehabil Neural Repair. 2004;18(4):268-73.