Geotechnical Characterization and Shear Strength Evaluation of Subsurface Soils for Foundation Design in Gbarian, Yenagoa, Niger Delta, Nigeria

Avery, Tonipre Thompson; Ogunmakinwa Segun Department of Geology, Federal University Otuoke, Bayelsa State

Oborie Ebiegberi E. Department of Geology, Niger Delta University, Bayelsa State

Abstract:

Reliable geotechnical investigation is crucial for designing safe and stable foundations in coastal and deltaic environments, where subsurface soils are often highly variable, compressible, and weak near the surface. This study provides a detailed geotechnical assessment of the subsurface conditions at a proposed three-storey building site in Gbarian Clan, Yenagoa, within the Niger Delta region of Nigeria. Two boreholes extending to 25 m were drilled, and both disturbed and undisturbed samples were obtained for laboratory analysis following BS 1377 and ASTM Procedures. The testing program included direct shear tests for granular soils and unconfined compressive strength (UCS) tests for cohesive soils.

The results show that the upper 3-6 m consists mainly of soft to firm clay with undrained shear strengths (Su) ranging from 15-35 kPa. These clays display moderate to high compressibility and low bearing capacity, conditions that could lead to significant settlement under applied loads. Below approximately 9 m, the soil profile transitions to dense to very dense sands, characterized by high friction angles ($\varphi = 40.7^{\circ}-45.9^{\circ}$), indicating strong, bearing layers with competent compressibility. UCS values for the clay samples range from 30.15-69.53 kPa, reflecting an increase in strength with depth due to the effects of overburden pressure.

Bearing capacity evaluations based on Terzaghi's equations show that shallow foundations founded within the dense sand layers would be structurally adequate, while the softer upper clay horizons may require ground improvement or the adoption of deep foundation systems. Overall, the findings are consistent with known Niger Delta geology and provide essential data for determining appropriate foundation solutions for the project site

Keywords: Geotechnical investigation, Niger Delta soils, Shear strength, Unconfined compressive strength (UCS), Direct shear test, Bearing capacity, Foundation design, Deltaic stratigraphy, soft clay, and Dense sand

1.0 Introduction

Site-specific geotechnical investigations are crucial for assessing subsurface conditions, determining engineering soil properties, and informing foundation design to minimize risks such as settlement, bearing failure, and differential movement. Coastal and deltaic environments like the Niger Delta pose additional geotechnical challenges due to the prevalence of soft clays, compressible silts, and irregular stratification (Ezenwaka et al., 2014).

Shallow foundations in such weak soils often undergo excessivesettlement, making detailed site investigation indispensable.

This geotechnical investigation was undertaken for J'Marvy Merchandises as part of the proposed development of a three-storey building in Gbarian Clan, Yenagoa LGA, Bayelsa State, Nigeria. In accordance with the National Building Code (NBC, 2006) issued by the Housing and Urban Development Ministry, soil investigations are a mandatory requirement before the construction of multi-storey or other engineered structures. The code specifies that site characterization must be carried out using test pits and/or boreholes, with a minimum of two test pits per site drilled to at least 2 m depth, or to bedrock if encountered at a shallower level.

The key objectives of this geotechnical investigation include:

- Drilling **two boreholes** to depths of up to **25 m** to identify bearing strata.
- Collecting disturbed and undisturbed samples for strength and compressibility testing.
- Providing laboratory data—including unconfined compressive strength (UCS), consolidation, and direct shear results—to guide foundation type selection and design parameters.

The findings from this study will provide essential geotechnical information for the safe and reliable foundation design of the proposed building.

2.0 Geological Setting

2.1 National Geological Framework

The geology of Nigeria consists of three major lithopetrological units:

- 1. The **Precambrian Basement Complex**, comprising migmatite—gneiss complexes, schist belts, and older granites.
- **2.** The **Younger Granites**, represented by Jurassic ring-complex intrusions.
- 3. The **Sedimentary Basins**, ranging from the Cretaceous to the Tertiary periods, including the extensive **Niger Delta Basin**.

2.2 Local Geology

The project site is located within the Niger Delta Complex and is underlain by recent alluvial, fluvio-deltaic, and mangrove-swamp deposits. These sediments typically consist of alternating layers of clay, silt, and sand, which are often highly compressible with low near- surface bearing capacity (Teme & Nwankwoala, 2023). Boreholes **BH01 and BH02** were drilled to depths of up to 25 m to capture the variability in subsurface conditions. Reconnaissance observations and a review of existing geological information confirm that the encountered materials are characteristic of the region's deltaic depositional environment.

3.0 Literature Review

Geotechnical site investigation provides critical data for evaluating subsurface conditions, soil strength, deformation characteristics, and overall suitability for engineering structures (Clayton et al., 1995). Shear strength is one of the most fundamental engineering properties used to evaluate the stability and load-carrying capacity of soils. According to Terzaghi and Peck (1967), the shear strength of soil is governed primarily by **cohesion (c)** and **angle of**

internal friction (φ) , which together determine its ability to resist shear stresses imposed by structural loads. For granular soils such as sands, **frictional resistance** (φ) is the dominant shear parameter, while apparent or true cohesion is generally negligible (Budhu, 2011). Direct shear tests, conducted in accordance with **BS 1377:1990 Part 7**, remain the most widely accepted laboratory method for evaluating shear strength of sands and silty sands.

In saturated cohesionless soils, increases in density, particle interlocking, and confinement lead to significant increases in ϕ (Das & Sobhan, 2014). Dense and very dense sands commonly exhibit ϕ -values between 34° and 45°, depending on gradation, particle shape, and in-situ compaction. The high ϕ -values obtained in direct shear testing are often associated with improved foundation performance and reduced settlement, especially under shallow footings (Holtz, Kovacs & Sheahan, 2011).

Unconfined compressive strength (UCS), on the other hand, is commonly applied to fine- grained cohesive soils to obtain the undrained strength (Su = qu/2). Undrained shear strength governs the short-term behavior of foundations in saturated clays, indicating stiffness, compressibility, and load-bearing capacity (Das & Sobhan, 2013). Su values between 25-75 kPa are typical for soft to medium clays in deltaic environments (Lambe & Whitman, 1969). The Niger Delta region, characterized by alternating soft clays, silts, organic layers, and loose-to-dense sands, presents significant geotechnical variability, which influences foundation performance (Short & Stauble, 1967; Oyedele & Okoh, 2011., Oyegun & Adeyemo, 2012). Hence, site-specific laboratory testing is essential for reliable engineering design.

Several investigations in the Niger Delta have shown that shallow clay deposits generally exhibit low to moderate UCS values, while deeper sections commonly contain dense sand layers that serve as reliable bearing strata for deep foundation systems (Adebayo & Olofinyo, 2017; Akpokodje, 1987).

The soils at **Gbarian, Yenagoa**, align with these regional observations, presenting a profile of dense to very dense sands at depths >9 m and moderate-strength silty clays in the upper layers, where dense sands at deeper horizons provide competent layers for spread footings or piles, while the upper clayey horizons may require improvement depending on loading conditions. Literature consistently emphasizes that accurate interpretation of shear strength profiles is critical for designing safe and economical foundations in such coastal terrains. The implications for foundation design depend on the strength, density, and compressibility of these strata.

4.0 Methodology

4.1 Field Investigation

Two boreholes were drilled using the rotary wash boring method (water circulation) to depths sufficient to encounter competent bearing strata, reaching up to 25 m. The drilling process employed drill rods, circulating drilling water or mud, casing where necessary for unstable formations, and removal of cuttings through annular flow to a mud tank or settling pit. Soil samples were obtained at predetermined depths—3, 6, 9, 14, 18, and 21 m—and prepared for laboratory testing.

4.2 Sample Collection and Laboratory Testing

During drilling, disturbed and undisturbed samples were retrieved. Laboratory tests were conducted in accordance with ASTM/BS standards:

- Direct shear test (for non-cohesive soils) BS 1377: Part 7
- Unconfined compressive strength (UCS) test (for cohesive soils) BS 1377: Part 7
- Consolidation test (for cohesive soils) ASTM D 4235

4.3 .Bearing Capacity Estimation:

Test results were then used to derive strength and compressibility parameters, assess bearing capacity and settlement potential, and provide foundation recommendations.

Empirical correlations using UCS and direct shear parameters, with a factor of safety of 3 applied in line with typical engineering practice (Das, 2013). Ultimate bearing capacity for shallow strip footings on undrained clay was estimated using Terzaghi's bearing capacity formula (Terzaghi, Peck & Mesri, 1996).

Undrained Shear Strength (Su):

 \underline{U} nconfined compressive strength tests (qu) divided by 2 give an approximate Undrained Shear Strength (Su).

 $S_u=q_u / 2equ (1)$

Terzaghi undrained strip footing formula for ultimate capacity (qult) For cohesive (undrained) soil, Terzaghi (for a strip footing) gives:

equ (2)

	q _{ult}	=	N _c ⋅ S _u
where	N _c	=	5.1 4.

Allowable (working) bearing pressure (qallow):

Common conservative factor-of-safety for working allowable pressures is FS = 3 (typical for serviceability/working design on foundations):

qallow = qult / FS

5.0 Results and Discussion

5.1 Direct Shear Test (apparent cohesion c, and angle of shearing resistance φ):

For borehole (BH01) at 9.0 m: Apparent Cohesion is 2.2 kPa (effectively negligible, as expected for sands), with Angle of Shearing resistance (φ) = 41.8°, at 18.0 m: Apparent Cohesion c = 2.2 kPa, with Angle of Shearing resistance (φ) = 43.2°, respectively. Soil description (**Table 1a & 1b**). For borehole (BH02) at 14.0 m: Apparent Cohesion is 1.1 kPa (effectively negligible, as expected for sands), with Angle of Shearing resistance (φ) = 40.7°, at 21.0 m: Apparent Cohesion c = 0.0 kPa, with Angle of Shearing resistance (φ) = 45.9°,

respectively. Soil description (Table 2a & 2b).

Interpretation:

These φ-values are very high and represent a powerful, very dense sand layer, well-suited for high bearing capacity foundations or pile support. The increase from 41.8° to 43.2° for BH01 and 45.9° at 21 m for BH02 indicates greater compaction, particle interlocking, and overburden confinement, showing progressive densification of the soil profile. This horizon presents an excellent bearing layer with minimal settlement potential.

Engineering significance:

- Such high friction angles imply high bearing capacity, low compressibility, and good resistance to shear failure.
- These sand layers can comfortably support shallow or deep foundations depending on the overlying weaker soils.

equ (3)

IJMSRT25NOV105 <u>www.ijmsrt.com</u> 512

Table 1a: DETERMINATION OF SHEAR STRENGTH BY DIRECT SHEAR (in the small shear box apparatus). Set of stage test – tested in accordance with BS 1377:1990: Part 7: Clause 4 (procedure 4.5.4)

TEST REPORT – SUMMARY

Project Location: Gbarian Clan, Yenagoa.

Project Reference: Sample Depth: 9m

Borehole number: BH01 Sample Type: Compacted cohesionless Sample number: Specimen Orientation: Horizontal Sample

Description: FINE SAND WITH SILT, LIGHT YELLOWISH BROWN,

DENSE, POORLY GRADED. (N=39)

INITIAL CONDITIONS	CDECIMEN 1	CDECIMEN 2	CDECIMEN
INITIAL CONDITIONS	SPECIMEN 1	SPECIMEN 2	SPECIMEN 3
Specimen Depth (m)	9.00	9.00	9.00
Height (mm)	20.0	20.0	20.0
Diameter (mm)	60.0	60.0	60.0
Area (mm²)	2827.4	2827.4	2827.4
Moisture content (measured)(%)	213	279	235
Moisture content (trimmings)(%)	24	24	24
Bulk density (Mg/m³)	2.00	2.00	2.00
Dry density (Mg/m³)	0.64	0.53	0.60
Void Ratio	2.129	2.793	2.348
Degree of Saturation (%)	200	200	200
Voids ratio at the end of consolidation	2.129	2.793	2.348
SHAERING			
Rate of displacement(mm/min)	0.300000	0.300000	0.300000
CONDITION AT PEAK SHEAR STRE	SS		
Normal Stress (KPa)	69	139	208
Shear Stress (KPa)	64	130	167
Horizontal displacement (mm)	2.97	3.25	3.68
Vertical displacement (mm)	0.221	0.230	0.230
Apparent Cohesion (KPa)	1	2.2	l
Angle of Shearing resistance (0)		41.8	

Table 1b: DETERMINATION OF SHEAR STRENGTH BY DIRECT SHEAR (in the

small shear box apparatus). Set of stage test – tested in accordance with BS 1377:1990: Part 7: Clause 4 (procedure 4.5.4)

TEST REPORT – SUMMARY

Project Location: Gbarian Clan, Yenagoa.

Project Reference: Sample Depth: 18.0m

Borehole number: BH01 Sample Type: Compacted cohesionless Sample number: Specimen Orientation: Horizontal Sample Description: FINE SAND WITH SILT, OLIVE YELLOW,

VERY DENSE, POORLY GRADED. (N>50)

	•	<u> </u>	
INITIAL CONDITIONS	SPECIMEN 1	SPECIMEN 2	SPECIMEN 3
Specimen Depth (m)	18.0	18.0	18.0
Height (mm)	20.0	20.0	20.0
Diameter (mm)	60.0	60.0	60.0
Area (mm²)	2827.4	2827.4	2827.4
Moisture content (measured)(%)	222	273	199
Moisture content (trimmings)(%)	13	13	13
Bulk density (Mg/m³)	2.00	2.00	2.00
Dry density (Mg/m³)	0.62	0.54	0.67
Void Ratio	2.216	2.731	1.986
Degree of Saturation (%)	200	200	200
Voids ratio at the end of consolidation	2.216	2.864	2.016
SHAERING			
Rate of displacement(mm/min)	0.300000	0.300000	0.300000
CONDITION AT PEAK SHEAR STRE	SS		
Normal Stress (KPa)	69	139	208
Shear Stress (KPa)	78	133	197
Horizontal displacement (mm)	2.09	2.68	2.86
Vertical displacement (mm)	0.214	0.223	0.119
Apparent Cohesion (KPa)	I	2.2	1

Table 2a: DETERMINATION OF SHEAR STRENGTH BY DIRECT SHEAR (in the small

shear box apparatus)

Set of stage test – tested in accordance with BS 1377:1990: Part 7: Clause 4 (procedure 4.5.4) TEST REPORT – SUMMARY

Project Location: Gbarian Clan, Yenagoa.

Project Reference: Sample Depth: 14.0m

Borehole number: BH02 Sample Type: Compacted cohesionless

Sample number: Specimen Orientation: Horizontal Sample

Description: FINE SAND WITH TRACES OF SILT, LIGHT YELLOWISH

BROWN, DENSE, POORLY GRADED. (N=28)

Particle Density (Mg/m³): 2.00 (Assumed).	Specin	nens tested submerge	d
INITIAL CONDITIONS	SPECIMEN 1	SPECIMEN 2	SPECIMEN 3
Specimen Depth (m)	14.00	14.00	14.00
Height (mm)	20.00	20.00	20.00
Diameter (mm)	60.00	60.00	60.00
Area (mm²)	2827.4	2827.4	2827.4
Moisture content (measured)(%)	193	163	172
Moisture content (trimmings)(%)	20	20	20
Bulk density (Mg/m³)	2.00	2.00	2.00
Dry density (Mg/m³)	0.68	0.76	0.73
Void Ratio	1.927	1.631	1.724
Degree of Saturation (%)	200	200	200
Voids ratio at the end of consolidation	1.927	1.631	1.762
SHAERING			
Rate of displacement(mm/min)	0.300000	0.300000	0.300000
CONDITION AT PEAK SHEAR STRESS	1	ı	1
Normal Stress (KPa)	69	139	208
Shear Stress (KPa)	70	116	180
Horizontal displacement (mm)	2.07	3.04	3.61
Vertical displacement (mm)	0.123	0.202	0.138
Apparent Cohesion (KPa)	1	1.1	l
Angle of Shearing resistance (0)		40.7	

Table 2b: DETERMINATION OF SHEAR STRENGTH BY DIRECT SHEAR (in the

small

shear box apparatus)

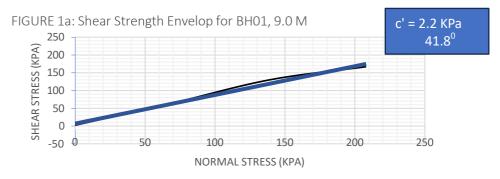
Set of stage test – tested in accordance with BS 1377:1990: Part 7: Clause 4 (procedure

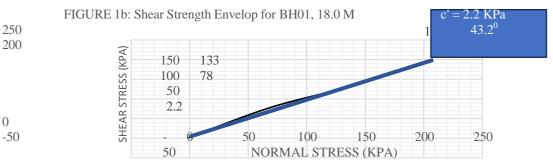
4.5.4)

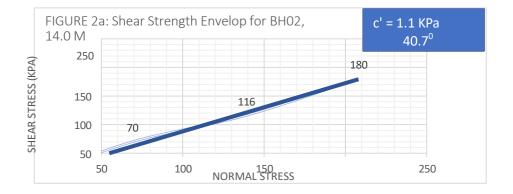
TEST REPORT – SUMMARY

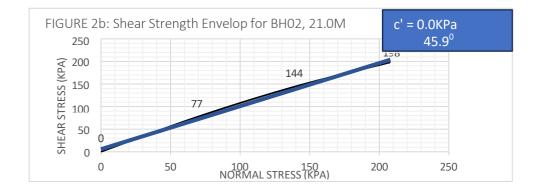
Project Location: Gbarian Clan, Yenagoa.

Project Reference: Sample Depth: 21.0m


Borehole number: BH02 Sample Type: Compacted cohesionless
Sample number: Specimen Orientation: Horizontal
Sample Description: FINE SAND WITH TRACES OF SILT, LIGHT


YELLOWISH


BROWN, DENSE, POORLY GRADED. (N=32)


Particle Density (Mg/m³): 2.00 (Assur	med). Spe	Specimens tested submerged			
INITIAL CONDITIONS	SPECIMEN 1	SPECIMEN 2	SPECIMEN 3		
Specimen Depth (m)	21.00	21.00	21.00		
Height (mm)	20.00	20.00	20.00		
Diameter (mm)	60.00	60.00	60.00		
Area (mm²)	2827.4	2827.4	2827.4		
Moisture content (measured)(%)	221	196	178		
Moisture content (trimmings)(%)	14	14	14		
Bulk density (Mg/m³)	2.00	2.00	2.00		
Dry density (Mg/m³)	0.62	0.67	0.72		
Void Ratio	2.213	1.964	1.779		
Degree of Saturation (%)	200	200	200		
Voids ratio at the end of consolidation	2.220	1.982	1.779		
SHAERING	I	l			
Rate of displacement(mm/min)	0.300000	0.300000	0.300000		
CONDITION AT PEAK SHEAR ST	RESS	1			
Normal Stress (KPa)	69	139	208		
Shear Stress (KPa)	77	144	198		
Horizontal displacement (mm)	2.58	3.37	3.04		
Vertical displacement (mm)	0.182	0.200	0.141		
Apparent Cohesion (KPa)	ı	0.0			
Angle of Shearing resistance (0)		45.9			

0

5.2 Unconfined Compressive Strength (qu):

For BH01: At 3.0 m depth, $\mathbf{qu}=59.06$ –62 kPa, undrained shear strength, $S_{\mathbf{u}}=29.53$ kPa, moisture content = 22.3%, Density ≈ 2.04 t/m³, axial strain at failure = 0.0525 (5.25%). (Table 3a)

That is, Consistency and Strength;

 S_{u} = 29.53 kPa \rightarrow Soft tofirm clay (standard classification: — Soft: S_{u} < 25 kPa; Firm: 25–50 kPa)

This indicates clay that is compressible and offers only moderate bearing support.

Stress–strain behavior; shows that failure occurred at 5.25% strain \rightarrow clay is ductile, showing plastic deformation before failure. The gradual stress drop after peak shows strain-softening, typical of soft clays (figure 3a).

Moisture & Density:

Moisture content (22.3%) is moderate, suggesting the soil is not fully saturated.

Higher density (2.04 t/m³) for clay at this depth often means overburden pressure has caused some consolidation.

For BH01: At 6.0 m depth, $\mathbf{qu} = 69.53$ kPa, undrained shear strength, $S_{\mathbf{u}} = 34.765$ kPa, moisture content = 43.2%, Density = 1.77 t/m³, axial strain at failure = 0.0275 (2.75%). (Table 3b)

That is, consistency;

 $S_u = 34.765$ kPa ≈ 35 kPa \rightarrow Firm clay, stronger than at 3 m, and there is considerably increase in strength with depth, commonly due to greater effective stress.

Stress-strain behavior, shows lower strain at failure (2.75%) indicates the clay is stiffer and less ductile at this depth.

Moisture and Density:

Moisture content increases significantly (43.2%), yet strength is higher—indicating: deeper layer is normally consolidated but stronger, possibly finer clay fraction

Lower density (1.77 t/m³) suggests a more saturated, less compact clay.

Engineering implications for BH01 are that clay at 3 m may experience moderate settlement under loads, while clay at 6 m has better shear strength and can support higher loads than the 3 m layer. This layer is suitable for end-bearing piles because of its moderate to firm shear strength; however, some settlement may still occur due to the compressible nature of the clay. For BH02: At 3.0 m depth, $\mathbf{qu}=30.15$ kPa, undrained shear strength, $S_{\mathbf{u}}=15$ kPa, moisture content = 31.1%, Density = 1.81 t/m³, axial strain at failure = 0.0325 (3.25%). (Table 3c).

That is, consistency;

Su \approx 15 kPa \rightarrow Soft clay, considerably weaker than BH01 at the same depth, and is a highly compressible, low-stiffness layer.

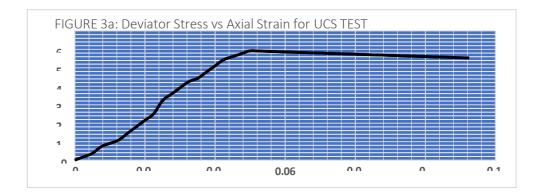
Stress–strain behavior: The peak stress is low with early failure → indicating very low load- carrying capacity.

For BH02: At 6.0 m depth, $\mathbf{qu}=45.88$ kPa, undrained shear strength, $\mathbf{Su}=22.94\approx23$ kPa, moisture content = 33.8%, Density = 1.91 t/m³, axial strain at failure = 0.0375 (3.75%), (Table 3b).

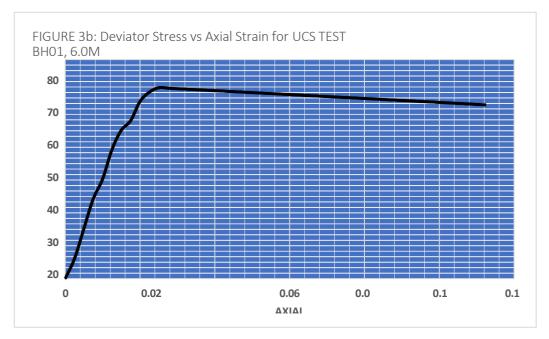
That is, consistency

Su ≈ 23 kPa \rightarrow Soft–firm clay but still weaker than BH01 at this depth. The strength increases with depth, from 30.15 \rightarrow 45.88 kPa between 3 m and 6 m. This trend aligns with natural consolidation from overburden stresses.

The implications for BH02 are that, at 3.0 m depth, there is a high risk of differential settlement for shallow foundations, and it is not suitable for pad or strip footing without soil improvement (e.g., replacement, stabilization). A raft foundation may be possible for light structures, but caution is needed in wet seasons, as shear strength may reduce further. The 6 m layer is better but still not very strong, shallow foundations may not be suitable unless loads are very light. Pile foundations may need to extend deeper than 6 m to reach competent strata.


TABLE 3a:	UNCONFIN	ED COM	IPRESSION TES	T			
Sample No:				B/Hole No:	BH01		
Location:	Gbarian Cla	ın, Yenago	oa	Depth:	3.0M		
Date:		· , · · · · · · · · · · · · ·		Type of material:	CLAY (SAM)	PLE A)	
BS 1377 – 7:19	90:7.2			IIIIIIII			
Specimen Detai		Initially	After Test				
Diameter D (mm)			Wet Mass g	72.89	100		
Area A0 (mm²)	1134.57		Dry Mass g	62.47			
	80.00		w. of container	15.70			
Volume V (cm ³)	90765.7		Water g	10.42			
Mass (g)	185.24		Dry mass g	46.77			
Density (t/m ³)	2.04		Moisture content %	22.3	0	0.05 0.1	0.15
A1 = 0.01	A2 = 4.16						
Machine No:	061000047		Rate of deformation			mm/ min	
Force device No:	0.01		4.16		Mean calibration	N/division	Stress factor
							KPa/divis ion
Deformation	Compres	Strain	Force gauge	ε×100	Axial	Corrected	00, 0 1
gauge reading	sion of	ε =	reading	ε×100	Force	Corrected area A =	ion Axial Stress
	sion of specimen	ε = ΔL/	0	ε×100	Force P =		ion Axial Stress δ1=(1000
gauge reading	sion of specimen ΔL =	ε =	reading	ε×100	Force P = (A2×D	area $A = A0/(1-\epsilon)$	ion Axial Stress
gauge reading	$\begin{array}{ll} \text{sion} & \text{of} \\ \text{specimen} \\ \Delta L & = \\ (A_1 \times D_1) \end{array}$	ε = ΔL/	reading	ε×100	Force P =	area A =	ion Axial Stress δ1=(1000 P/A)
gauge reading	sion of specimen ΔL =	ε = ΔL/	reading	ε×100	Force P = (A2×D 2)	area $A = A0/(1-\epsilon)$	ion Axial Stress δ1=(1000
gauge reading (D1)	sion of specimen $\Delta L = (A_1 \times D_1)$ Mm	$\epsilon = \Delta L/L_0$	reading (D2)		Force P = (A2×D 2)	area A = A0/(1-ε) mm ²	ion Axial Stress δ1=(1000 P/A) KPa
gauge reading (D1)	sion of specimen ΔL = (A1× D1) Mm	ε = ΔL/ L0	reading (D2)	0	Force P = (A2×D 2) N 0	area $A = A_0/(1-\epsilon)$ mm^2	ion Axial Stress δ1=(1000 P/A)
gauge reading (D1)	sion of specimen $\Delta L = (A_1 \times D_1)$ Mm	$\epsilon = \Delta L/L_0$	reading (D2)		Force P = (A2×D 2)	area A = A0/(1-ε) mm ²	ion Axial Stress δ1=(1000 P/A) KPa
gauge reading (D1) 0 20	sion of specimen ΔL = (A1×D1) Mm	ε = ΔL/ L0 0 0.0025	reading (D2) 0 0.5	0 0.25	Force P = (A2×D 2) N 0 2.08	area A = $A0/(1-ε)$ mm ²	ion Axial Stress δ1=(1000 P/A) KPa 0 1.83
gauge reading (D1) 0 20 40	sion of specimen ΔL = (A1× D1) Mm 0.0 0.2 0.4	ε = ΔL/ L0 0 0.0025 0.0050	reading (D2) 0 0.5 1.0	0 0.25 0.50	Force P = (A2×D 2) N 0 2.08 4.16	area A = A0/(1-ε) mm ² 0 1137.4 1140.3	ion Axial Stress δ1=(1000 P/A) KPa 0 1.83 3.65
gauge reading (D1) 0 20 40 60	sion of specimen	ε = ΔL/ L0 0 0.0025 0.0050 0.0075	reading (D2) 0 0.5 1.0 2.0	0 0.25 0.50 0.75	Force P = (A2×D 2) N 0 2.08 4.16 8.32	area A = A0/(1-ε) mm ² 0 1137.4 1140.3 1143.1	ion Axial Stress δ1=(1000 P/A) KPa 0 1.83 3.65 7.28
gauge reading (D1) 0 20 40 60 80 100 120	sion of specimen AL = (A1× D1) Mm 0.0 0.2 0.4 0.6 0.8 1.0 1.2	ε = ΔL/ L0 0 0.0025 0.0050 0.0075 0.0100 0.0125 0.0150	reading (D2) 0 0.5 1.0 2.0 3.0 4.0 5.0	0 0.25 0.50 0.75 1.00 1.25 1.50	Force P = (A2×D 2) N 0 2.08 4.16 8.32 10.40 12.48 16.64	area A = A0/(1-ε) mm ² 0 1137.4 1140.3 1143.1 1146.0 1148.9 1151.8	ion Axial Stress δ1=(1000 P/A) KPa 0 1.83 3.65 7.28 9.07 10.86 14.45
gauge reading (D1) 0 20 40 60 80 100 120 140	sion of specimen AL = (A1× D1) Mm 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4	ε = ΔL/ L0 0 0.0025 0.0050 0.0075 0.0100 0.0125 0.0150 0.0175	reading (D2) 0 0.5 1.0 2.0 3.0 4.0 5.0 6.0	0 0.25 0.50 0.75 1.00 1.25 1.50	Force P = (A2×D 2) N 0 2.08 4.16 8.32 10.40 12.48 16.64 20.80	area A = A0/(1-ε) mm ² 0 1137.4 1140.3 1143.1 1146.0 1148.9 1151.8 1154.8	ion Axial Stress δ1=(1000 P/A) KPa 0 1.83 3.65 7.28 9.07 10.86 14.45 18.01
gauge reading (D1) 0 20 40 60 80 100 120 140 160	sion of specimen AL = (A1× D1) Mm 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6	$\begin{array}{c} \epsilon & = \\ \Delta L / \\ L_0 \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	reading (D2) 0 0.5 1.0 2.0 3.0 4.0 5.0 6.0 7.0	0 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00	Force P = (A2×D 2) N 0 2.08 4.16 8.32 10.40 12.48 16.64 20.80 24.96	area A = A0/(1-ε) mm ² 0 1137.4 1140.3 1143.1 1146.0 1148.9 1151.8 1154.8 1157.7	ion Axial Stress δ1=(1000 P/A) KPa 0 1.83 3.65 7.28 9.07 10.86 14.45 18.01 21.56
gauge reading (D1) 0 20 40 60 80 100 120 140 160 180	sion of specimen AL = (A1× D1) Mm 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8	ε = ΔL/ L0 0 0.0025 0.0050 0.0075 0.0100 0.0125 0.0175 0.0200 0.0225	reading (D2) 0 0.5 1.0 2.0 3.0 4.0 5.0 6.0 7.0 9.0	0 0.25 0.50 0.75 1.00 1.25 1.75 2.00 2.25	Force P = (A2×D 2) N 0 2.08 4.16 8.32 10.40 12.48 16.64 20.80 24.96 29.12	area A = A0/(1-ε) mm ² 0 1137.4 1140.3 1143.1 1146.0 1148.9 1151.8 1154.8 1157.7 1160.7	ion Axial Stress δ1=(1000 P/A) KPa 0 1.83 3.65 7.28 9.07 10.86 14.45 18.01 21.56 25.09
gauge reading (D1) 0 20 40 60 80 100 120 140 160 180 200	sion of specimen AL = (A1× D1) Mm 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0	ε = ΔL/ L0 0 0.0025 0.0050 0.0075 0.0100 0.0125 0.0150 0.0175 0.0200 0.0225 0.0250	reading (D2) 0 0.5 1.0 2.0 3.0 4.0 5.0 6.0 7.0 9.0 10.0	0 0.25 0.50 0.75 1.00 1.25 1.50 2.00 2.25 2.50	Force P = (A2×D 2) N 0 2.08 4.16 8.32 10.40 12.48 16.64 20.80 24.96 29.12 37.44	area A = A0/(1-ε) mm ² 0 1137.4 1140.3 1143.1 1146.0 1148.9 1151.8 1154.8 1157.7 1160.7 1163.7	ion Axial Stress δ1=(1000 P/A) KPa 0 1.83 3.65 7.28 9.07 10.86 14.45 18.01 21.56 25.09 32.17
gauge reading (D1) 0 20 40 60 80 100 120 140 160 180 200 220	sion of specimen AL = (A1× D1) Mm 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2	ε = ΔL/ L0 0 0.0025 0.0050 0.0075 0.0100 0.0125 0.0150 0.0175 0.0200 0.0225 0.0250 0.0275	reading (D2) 0 0.5 1.0 2.0 3.0 4.0 5.0 6.0 7.0 9.0 10.0 11.0	0 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75	Force P = (A2×D 2) N 0 2.08 4.16 8.32 10.40 12.48 16.64 20.80 24.96 29.12 37.44 41.60	area A = A0/(1-ε) mm ² 0 1137.4 1140.3 1143.1 1146.0 1148.9 1151.8 1154.8 1157.7 1160.7 1163.7 1166.7	ion Axial Stress δ1=(1000 P/A) KPa 0 1.83 3.65 7.28 9.07 10.86 14.45 18.01 21.56 25.09 32.17 35.66
gauge reading (D1) 0 20 40 60 80 100 120 140 160 180 200 220 240	sion of specimen AL = (A1× D1) Mm 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4	ε = ΔL/ L0 0 0.0025 0.0050 0.0100 0.0125 0.0150 0.0175 0.0200 0.0225 0.0250 0.0275 0.0300	reading (D2) 0 0.5 1.0 2.0 3.0 4.0 5.0 6.0 7.0 9.0 10.0 11.0 12.0	0 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75 3.00	Force P = (A2×D 2) N 0 2.08 4.16 8.32 10.40 12.48 16.64 20.80 24.96 29.12 37.44 41.60 45.76	area A = A0/(1-ε) mm ² 0 1137.4 1140.3 1143.1 1146.0 1148.9 1151.8 1154.8 1157.7 1160.7 1163.7 1166.7 1169.7	ion Axial Stress δ1=(1000 P/A) KPa 0 1.83 3.65 7.28 9.07 10.86 14.45 18.01 21.56 25.09 32.17 35.66 39.12
gauge reading (D1) 0 20 40 60 80 100 120 140 160 180 200 220 240 260	sion of specimen AL = (A1× D1) Mm 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6	ε = ΔL/ L0 0 0.0025 0.0050 0.0100 0.0125 0.0150 0.0175 0.0200 0.0225 0.0250 0.0275 0.0300 0.0325	reading (D2) 0 0.5 1.0 2.0 3.0 4.0 5.0 6.0 7.0 9.0 11.0 12.0 12.5	0 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75 3.00 3.25	Force P = (A2×D 2) N 0 2.08 4.16 8.32 10.40 12.48 16.64 20.80 24.96 29.12 37.44 41.60 45.76 49.92	area A = A0/(1-ε) mm ² 0 1137.4 1140.3 1143.1 1146.0 1148.9 1151.8 1154.8 1157.7 1160.7 1163.7 1166.7 1169.7 1172.7	ion Axial Stress δ1=(1000 P/A) KPa 0 1.83 3.65 7.28 9.07 10.86 14.45 18.01 21.56 25.09 32.17 35.66 39.12 42.57
gauge reading (D1) 0 20 40 60 80 100 120 140 160 180 200 220 240	sion of specimen AL = (A1× D1) Mm 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4	ε = ΔL/ L0 0 0.0025 0.0050 0.0100 0.0125 0.0150 0.0175 0.0200 0.0225 0.0250 0.0275 0.0300	reading (D2) 0 0.5 1.0 2.0 3.0 4.0 5.0 6.0 7.0 9.0 10.0 11.0 12.0	0 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75 3.00	Force P = (A2×D 2) N 0 2.08 4.16 8.32 10.40 12.48 16.64 20.80 24.96 29.12 37.44 41.60 45.76	area A = A0/(1-ε) mm ² 0 1137.4 1140.3 1143.1 1146.0 1148.9 1151.8 1154.8 1157.7 1160.7 1163.7 1166.7 1169.7	ion Axial Stress δ1=(1000 P/A) KPa 0 1.83 3.65 7.28 9.07 10.86 14.45 18.01 21.56 25.09 32.17 35.66 39.12

320	3.2	0.0400	15.5	4.00	60.32	1181.8	51.04
340	3.4	0.0425	16.0	4.25	64.48	1184.9	54.42
360	3.6	0.0423	16.5	4.50	66.56	1188.0	56.03
380	3.8	0.0430	17.0	4.75	68.64	1191.2	57.62
400	4.0	0.0475	17.0	5.00	70.72	1191.2	59.22
420	4.0	0.0500	17.0	5.25	70.72	1194.3	59.22
440	4.4	0.0525	17.0	5.50	70.72	1200.6	58.90
460	4.4	0.0550	17.0	5.75	70.72	1200.6	58.75
	4.6						
480		0.0600	17.0	6.00	70.72	1207.0	58.59
500	5.0	0.0625	17.0	6.25	70.72	1210.2	58.44
520	5.2	0.0650	17.0	6.50	70.72	1213.4	58.28
540	5.4	0.0675	17.0	6.75	70.72	1216.7	58.12
560	5.6	0.0700	17.0	7.00	70.72	1220.0	57.97
580	5.8	0.0725	17.0	7.25	70.72	1223.3	57.81
600	6.0	0.0750	17.0	7.50	70.72	1226.6	57.66
620	6.2	0.0775	17.0	7.75	70.72	1229.9	57.50
640	6.4	0.0800	17.0	8.00	70.72	1233.2	57.35
660	6.6	0.0825	17.0	8.25	70.72	1236.6	57.19
680	6.8	0.0850	17.0	8.50	70.72	1240.0	57.03
700	7.0	0.0875	17.0	8.75	70.72	1243.4	56.88
720	7.2	0.0900	17.0	9.00	70.72	1246.8	56.72
740	7.4	0.0925	17.0	9.25	70.72	1250.2	56.57
760	7.6	0.0950	17.0	9.50	70.72	1253.7	56.41
780	7.8	0.0975	17.0	9.75	70.72	1257.1	56.25
800	8.0	0.1000	17.0	10.00	70.72	1260.6	56.10
820	8.2	0.1025	17.0	10.25	70.72	1264.1	55.94
840	8.4	0.1050	17.0	10.50	70.72	1267.7	55.79
860	8.6	0.1075	17.0	10.75	70.72	1271.2	55.63
880	8.8	0.1100	17.0	11.00	70.72	1274.8	55.48
900	9.0	0.1125	17.0	11.25	70.72	1278.4	55.32
920	9.2	0.1150	17.0	11.50	70.72	1282.0	55.16
940	9.4	0.1175	17.0	11.75	70.72	1285.6	55.01
960	9.6	0.1200	17.0	12.00	70.72	1289.3	54.85
					MAXIMU	M AXIAL	59.06 KPa
					STRESS		
					AXIAL	STRAIN AT	0.0525
					FAILURE		


Sample No:				B/Hole	BH01,		
T 42	Charian Cla	V		No:	6.0m		
Location: Date:	Gbarian Cla	in, Yenago	oa	Depth: Type of	CLAY (SAM	(DI E A)	
Date:				material:	CLAT (SAW	IF LE A)	
BS 1377 – 7		l =					
Specimen D		Initially			100		
Diameter D (mm)	38.00		Wet Mass g	43.12	50		
(mm ²)	1134.57		Dry Mass	34.89			
Length L0 (mm)	80.00		w. of container g	15.84			
Volume V (cm ³)	90765.7		Water g	8.23			
Mass (g)	160		Dry mass g	19.05			
Density (mg/m ³)	1.77		Moisture content %	43.2	0	0.0 5	0.1 0.15
$A_1 = 0.01$	A2 = 4.16	•			'		
Machine	061000047		Rate of			mm/	
No:			deformation		T	min	T
Force device No:	0.01		4.16		Mean calibration	N/division	Stress factor KPa/division
Deformatio	Compres	Strain	Force gauge	ε×100	Axial	Corrected	Axial
n gauge	_	ε =	reading	6 / 100	Force	area A =	Stress
reading	specimen	ΔL/	(D2)		P =	Α0/(1-ε)	δ1=(1000
(D1)	$\Delta L =$	L ₀			(A2×D		P/A)
	(A1× D1) Mm				2) N	mm ²	KPa
0	0.0	0	0	0	0	0	0
20	0.2	0.0025	2.0	0.25	8.32	1137.4	7.31
40	0.4	0.0050	5.0	0.50	20.80	1140.3	18.24
60	0.6	0.0075	8.0	0.75	33.28	1143.1	29.11
80	0.8	0.0100	10.0	1.00	41.60	1146.0	36.30
100	1.0	0.0125	13.0	1.25	54.08	1148.9	47.07
120	1.2	0.0150	15.0	1.50	62.40	1151.8	54.17
	1.4		160	1 55	((= (1 1 b / 1 V	57.64
140	1.4	0.0175	16.0	1.75	66.56	1154.8	
140 160	1.6	0.0175 0.0200	18.0	2.00	74.88	1157.7	64.68
140 160 180	1.6 1.8	0.0175 0.0200 0.0225	18.0 19.0	2.00 2.25	74.88 79.04	1157.7 1160.0	64.68 68.10
140 160 180 200	1.6 1.8 2.0	0.0175 0.0200 0.0225 0.0250	18.0 19.0 19.5	2.00 2.25 2.50	74.88 79.04 81.12	1157.7 1160.0 1163.7	64.68 68.10 69.71
140 160 180 200 220	1.6 1.8 2.0 2.2	0.0175 0.0200 0.0225 0.0250 0.0275	18.0 19.0 19.5 19.5	2.00 2.25 2.50 2.75	74.88 79.04 81.12 81.12	1157.7 1160.0 1163.7 1166.7	64.68 68.10 69.71 69.53
140 160 180 200 220 240	1.6 1.8 2.0 2.2 2.4	0.0175 0.0200 0.0225 0.0250 0.0275 0.0300	18.0 19.0 19.5 19.5 19.5	2.00 2.25 2.50 2.75 3.00	74.88 79.04 81.12 81.12 81.12	1157.7 1160.0 1163.7 1166.7 1169.7	64.68 68.10 69.71 69.53 69.35
140 160 180 200 220 240 260	1.6 1.8 2.0 2.2 2.4 2.6	0.0175 0.0200 0.0225 0.0250 0.0275 0.0300 0.0325	18.0 19.0 19.5 19.5	2.00 2.25 2.50 2.75 3.00 3.25	74.88 79.04 81.12 81.12	1157.7 1160.0 1163.7 1166.7 1169.7 1172.7	64.68 68.10 69.71 69.53
140 160 180 200 220 240 260 280	1.6 1.8 2.0 2.2 2.4	0.0175 0.0200 0.0225 0.0250 0.0275 0.0300	18.0 19.0 19.5 19.5 19.5 19.5	2.00 2.25 2.50 2.75 3.00	74.88 79.04 81.12 81.12 81.12 81.12	1157.7 1160.0 1163.7 1166.7 1169.7	64.68 68.10 69.71 69.53 69.35 69.17
140 160 180 200 220 240 260 280 300	1.6 1.8 2.0 2.2 2.4 2.6 2.8	0.0175 0.0200 0.0225 0.0250 0.0275 0.0300 0.0325 0.0350	18.0 19.0 19.5 19.5 19.5 19.5 19.5	2.00 2.25 2.50 2.75 3.00 3.25 3.50	74.88 79.04 81.12 81.12 81.12 81.12 81.12	1157.7 1160.0 1163.7 1166.7 1169.7 1172.7 1175.7	64.68 68.10 69.71 69.53 69.35 69.17 69.00
140 160 180 200 220 240 260 280 300 320	1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0	0.0175 0.0200 0.0225 0.0250 0.0275 0.0300 0.0325 0.0350 0.0375	18.0 19.0 19.5 19.5 19.5 19.5 19.5 19.5	2.00 2.25 2.50 2.75 3.00 3.25 3.50 3.75	74.88 79.04 81.12 81.12 81.12 81.12 81.12 81.12	1157.7 1160.0 1163.7 1166.7 1169.7 1172.7 1175.7 1178.8	64.68 68.10 69.71 69.53 69.35 69.17 69.00 68.82
180 200 220 240 260	1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2	0.0175 0.0200 0.0225 0.0250 0.0275 0.0300 0.0325 0.0350 0.0375 0.0400	18.0 19.0 19.5 19.5 19.5 19.5 19.5 19.5 19.5	2.00 2.25 2.50 2.75 3.00 3.25 3.50 3.75 4.00	74.88 79.04 81.12 81.12 81.12 81.12 81.12 81.12 81.12	1157.7 1160.0 1163.7 1166.7 1169.7 1172.7 1175.7 1178.8 1181.8	64.68 68.10 69.71 69.53 69.35 69.17 69.00 68.82 68.64
140 160 180 200 220 240 260 280 300 320 340	1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4	0.0175 0.0200 0.0225 0.0250 0.0275 0.0300 0.0325 0.0375 0.0375 0.0400	18.0 19.0 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5	2.00 2.25 2.50 2.75 3.00 3.25 3.50 3.75 4.00 4.25	74.88 79.04 81.12 81.12 81.12 81.12 81.12 81.12 81.12 81.12	1157.7 1160.0 1163.7 1166.7 1169.7 1172.7 1175.7 1178.8 1181.8 1184.9	64.68 68.10 69.71 69.53 69.35 69.17 69.00 68.82 68.64 68.46
140 160 180 200 220 240 260 280 300 320 340 360	1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6	0.0175 0.0200 0.0225 0.0250 0.0275 0.0300 0.0325 0.0350 0.0375 0.0400 0.0425	18.0 19.0 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5	2.00 2.25 2.50 2.75 3.00 3.25 3.50 3.75 4.00 4.25 4.50	74.88 79.04 81.12 81.12 81.12 81.12 81.12 81.12 81.12 81.12 81.12	1157.7 1160.0 1163.7 1166.7 1169.7 1172.7 1175.7 1178.8 1181.8 1184.9 1188.0	64.68 68.10 69.71 69.53 69.35 69.17 69.00 68.82 68.64 68.46 68.28

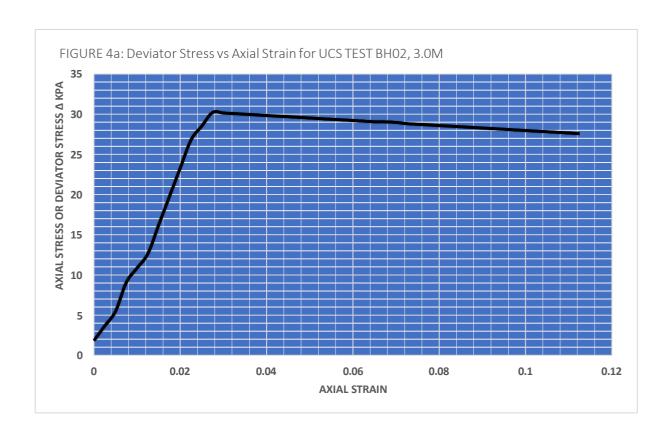
IJMSRT25NOV105 www.ijmsrt.com DOI: https://doi.org/10.5281/zenodo.17935381 521

440	4.4	0.0550	19.5	5.50	81.12	1200.6	67.57
460	4.6		19.5	5.75	81.12	1203.8	67.39
480	4.8		19.5	6.00	81.12	1207.0	67.21
500	5.0		19.5	6.25	81.12	1210.2	67.03
520	5.2		19.5	6.50	81.12	1213.4	66.85
540	5.4		19.5	6.75	81.12	1216.7	66.67
560	5.6	0.0700	19.5	7.00	81.12	1220.0	66.49
580	5.8	0.0725	19.5	7.25	81.12	1223.3	66.31
600	6.0	0.0750	19.5	7.50	81.12	1226.6	66.14
620	6.2	0.0775	19.5	7.75	81.12	1229.9	65.96
640	6.4	0.0800	19.5	8.00	81.12	1233.2	65.78
660	6.6	0.0825	19.5	8.25	81.12	1236.6	65.60
680	6.8	0.0850	19.5	8.50	81.12	1240.0	65.42
700	7.0	0.0875	19.5	8.75	81.12	1243.4	65.24
720	7.2	0.0900	19.5	9.00	81.12	1246.8	65.06
740	7.4	0.0925	19.5	9.25	81.12	1250.2	64.88
760	7.6	0.0950	19.5	9.50	81.12	1253.7	64.71
780	7.8	0.0975	19.5	9.75	81.12	1257.1	64.53
800	8.0	0.1000	19.5	10.00	81.12	1260.6	64.35
820	8.2	0.1025	19.5	10.25	81.12	1264.1	64.17
840	8.4	0.1050	19.5	10.50	81.12	1267.7	63.99
860	8.6	0.1075	19.5	10.75	81.12	1271.2	63.81
880	8.8	0.1100	19.5	11.00	81.12	1274.8	63.63
900	9.0	0.1125	19.5	11.25	81.12	1278.4	63.45
920	9.2	0.1150	19.5	11.50	81.12	1282.0	63.28
940	9.4	0.1175	19.5	11.75	81.12	1285.6	63.10
960	9.6	0.1200	19.5	12.00	81.12	1289.3	62.92
					MAXIMUM STRESS	AXIAL	69.53 KPa
					AXIAL ST FAILURE	TRAIN AT	0.0275

AXIAL STRESS OR DEVIATOR STRESS Δ KPA

AXIAL STRESS OR DEVIATOR STRESS Δ KPA

TABLE 4a: U	NCONFINE	COMPRI	ESSION TEST				
Sample No:				B/Hole No:	BH 02		
Location:	Gbarian Clan	, Yenagoa		Depth:	3.0 M		
Date:				Type of material:	CLAY (SAMPI	LE A)	
BS 1377 – 7:1990	:7.2						
Specimen Details		Initially	After Test				
Diameter D (mm)	38.00		Wet Mass g	66.04	40 20		
Area A0 (mm ²)	1134.57		Dry Mass g	54.11			
Length L ₀ (mm)	80.00		w. of container g	15.71			
Volume V (cm ³)	90765.7		Water g	11.93			
Mass (g)	164.64		Dry mass g	38.40			
Density (t/m ³)	1.81		Moisture content	31.1	0	0.05 0.1	0.15
A1 = 0.01	$A_2 = 4.16$		70				
Machine No:	061000047		Rate of deformation	•		mm/mi	
Force device No:	0.01		4.16		Mean calibration	n N/division	Stress factor
							KPa/divisio n
Deformation gauge reading (D1)	Compressi on of specimen $\Delta L = (A_1 \times D_1)$ mm	Strain ε = ΔL/ L0	Force gauge reading (D2)	ε×100	Axial Force P = (A2×D2)	Corrected area $A = A_0/(1-\epsilon)$ mm ²	Axial Stress δ1=(1000P /A) KPa
0	0.0	0	0	0	0	0	0
20	0.2	0.0025	0.5	0.25	2.08	1137.4	1.83
40	0.4	0.0050	1.0	0.50	4.16	1140.3	3.65
60	0.6	0.0075	1.5	0.75	6.24	1143.1	5.46
80	0.8	0.0100	2.5	1.00	10.40	1146.0	9.07
100	1.0	0.0125	3.0	1.25	12.48	1148.9	10.86
120	1.2	0.0150	3.5	1.50	18.72	1151.8	12.64
140	1.4	0.0175	4.5	1.75	22.88	1154.8	16.21
160	1.6	0.0200	5.5	2.00	27.04	1157.7	19.76
180	1.8	0.0225	6.5	2.25	31.20	1160.0	23.30
100	1.0	0.0223	0.0				
200	2.0	0.0250	7.5	2.50	33.28	1163.7	26.81


					AXIAL ST FAILURE	FRAIN AT	0.0325
					MAXIMUM A		30.15 KPa
960	9.6	0.1200	8.5	12.00	35.36	1289.3	27.43
940	9.4	0.1175	8.5	11.75	35.36	1285.6	27.50
920	9.2	0.1123	8.5	11.50	35.36	1282.0	27.58
900	9.0	0.1100	8.5	11.00	35.36	1274.8	27.66
880	8.8	0.1073	8.5	11.00	35.36	1274.8	27.74
860	8.6	0.1030	8.5	10.30	35.36	1271.2	27.82
840	8.4	0.1025	8.5	10.25	35.36	1267.7	27.89
820	8.2	0.1000	8.5	10.00	35.36	1264.1	27.97
800	8.0	0.1000	8.5	10.00	35.36	1260.6	28.05
780	7.8	0.0930	8.5	9.75	35.36	1257.1	28.13
760	7.6	0.0923	8.5	9.50	35.36	1253.7	28.21
740	7.4	0.0900	8.5	9.00	35.36	1250.2	28.28
720	7.0	0.0900	8.5	9.00	35.36	1245.4	28.36
700	7.0	0.0875	8.5	8.75	35.36	1243.4	28.44
680	6.8	0.0850	8.5	8.50	35.36	1240.0	28.52
660	6.6	0.0825	8.5	8.25	35.36	1235.2	28.59
640	6.4	0.0800	8.5	8.00	35.36	1233.2	28.67
620	6.2	0.0755	8.5	7.75	35.36	1229.9	28.75
600	6.0	0.0750	8.5	7.50	35.36	1226.6	28.83
580	5.8	0.0725	8.5	7.25	35.36	1223.3	28.91
560	5.6	0.0700	8.5	7.00	35.36	1220.0	28.98
540	5.4	0.0675	8.5	6.75	35.36	1216.7	29.06
520	5.2	0.0650	8.5	6.50	35.36	1213.4	29.14
500	5.0	0.0625	8.5	6.25	35.36	1210.2	29.22
480	4.8	0.0600	8.5	6.00	35.36	1207.0	29.30
460	4.6	0.0575	8.5	5.75	35.36	1203.8	29.37
440	4.4	0.0550	8.5	5.50	35.36	1200.6	29.45
420	4.2	0.0525	8.5	5.25	35.36	1197.4	29.53
400	4.0	0.0500	8.5	5.00	35.36	1194.3	29.61
380	3.8	0.0475	8.5	4.75	35.36	1191.2	29.69
360	3.6	0.0450	8.5	4.50	35.36	1188.0	29.76
340	3.4	0.0425	8.5	4.25	35.36	1184.9	29.84
320	3.2	0.0400	8.5	4.00	35.36	1181.8	29.92
300	3.0	0.0375	8.5	3.75	35.36	1178.8	30.00
280	2.8	0.0350	8.5	3.50	35.36	1175.7	30.08
260	2.6	0.0325	8.5	3.25	35.36	1172.7	30.15
240	2.4	0.0300	8.5	3.00	35.36	1169.7	30.23

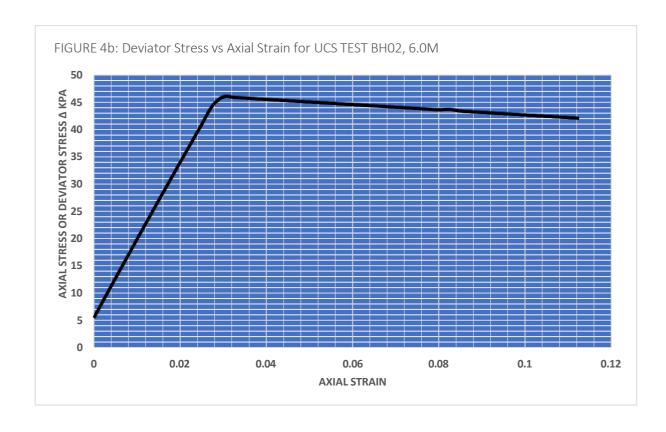

www.ijmsrt.com
DOI: https://doi.org/10.5281/zenodo.17935381 525 IJMSRT25NOV105

TABLE 4b:	UNCONFIN	ED COM	PRESSION TEST	[
Sample No:				B/Hole No:	BH 02		
Location:	Gbarian Cla	n, Yenago	a	Depth:	6.0M		
Date:				Type of material:	CLAY (SAMI	PLE A)	
BS 1377 – 7:199	90:7.2						
Specimen Detai	ls	Initially	After Test				
Diameter D (mm)	38.00		Wet Mass g	63.17	50		
` /	1134.57		Dry Mass g	51.24			
	80.00		w. of container	15.91			
Volume V (cm ³)	90765.7		Water g	11.93			
Mass (g)	173.45		Dry mass g	35.33			
Density (t/m ³)	1.91		Moisture content %	33.8		0.0 0.1 5	0.15
$\mathbf{A1} = 0.01$	A2 = 4.16						
Machine No:	061000047		Rate of deformation			mm/ min	
Force device No:	0.01		4.16		Mean calibration	N/division	Stress factor
							KPa/divisi on
Deformation gauge reading (D1)	specimen ΔL =	Strain ε = ΔL/ L0	Force gauge reading (D2)	ε×100	Axial Force P =	Corrected area $A = A0/(1-\epsilon)$	Axial Stress δ1=(1000
	(A1×D1) mm	, ,			(A2×D2) N	mm ²	P/A) KPa
0		0	0	0	(A2×D2) N 0	mm ²	
20	0.0 0.2	0 0.0025	0.5	0.25) N 0 2.08	0 1137.4	KPa 0 1.83
20 40	0.0 0.2 0.4	0 0.0025 0.0050	0.5 1.5	0.25 0.50	N 0 2.08 6.24	0 1137.4 1140.3	KPa 0 1.83 5.47
20 40 60	0.0 0.2 0.4 0.6	0 0.0025 0.0050 0.0075	0.5 1.5 2.5	0.25 0.50 0.75	N 0 2.08 6.24 10.40	0 1137.4 1140.3 1143.1	KPa 0 1.83 5.47 9.10
20 40 60 80	0.0 0.2 0.4 0.6 0.8	0 0.0025 0.0050 0.0075 0.0100	0.5 1.5 2.5 3.5	0.25 0.50 0.75 1.00	N 0 2.08 6.24 10.40 14.56	0 1137.4 1140.3 1143.1 1146.0	KPa 0 1.83 5.47 9.10 12.70
20 40 60 80 100	0.0 0.2 0.4 0.6 0.8 1.0	0 0.0025 0.0050 0.0075 0.0100 0.0125	0.5 1.5 2.5 3.5 4.5	0.25 0.50 0.75 1.00 1.25	N 0 2.08 6.24 10.40 14.56 18.72	0 1137.4 1140.3 1143.1 1146.0 1148.9	KPa 0 1.83 5.47 9.10 12.70 16.29
20 40 60 80 100 120	0.0 0.2 0.4 0.6 0.8 1.0	0 0.0025 0.0050 0.0075 0.0100 0.0125 0.0150	0.5 1.5 2.5 3.5 4.5 5.5	0.25 0.50 0.75 1.00 1.25 1.50	N 0 2.08 6.24 10.40 14.56 18.72 22.88	0 1137.4 1140.3 1143.1 1146.0 1148.9 1151.8	KPa 0 1.83 5.47 9.10 12.70 16.29 19.86
20 40 60 80 100 120 140	mm 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4	0 0.0025 0.0050 0.0075 0.0100 0.0125 0.0150 0.0175	0.5 1.5 2.5 3.5 4.5 5.5 6.5	0.25 0.50 0.75 1.00 1.25 1.50 1.75	N 0 2.08 6.24 10.40 14.56 18.72 22.88 27.04	0 1137.4 1140.3 1143.1 1146.0 1148.9 1151.8	KPa 0 1.83 5.47 9.10 12.70 16.29 19.86 23.42
20 40 60 80 100 120 140	0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4	0 0.0025 0.0050 0.0075 0.0100 0.0125 0.0150 0.0175 0.0200	0.5 1.5 2.5 3.5 4.5 5.5 6.5 7.5	0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00	N 0 2.08 6.24 10.40 14.56 18.72 22.88 27.04 31.20	0 1137.4 1140.3 1143.1 1146.0 1148.9 1151.8 1154.8 1157.7	KPa 0 1.83 5.47 9.10 12.70 16.29 19.86 23.42 26.95
20 40 60 80 100 120 140 160	mm 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8	0 0.0025 0.0050 0.0075 0.0100 0.0125 0.0150 0.0175 0.0200 0.0225	0.5 1.5 2.5 3.5 4.5 5.5 6.5 7.5 8.5	0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25	N 0 2.08 6.24 10.40 14.56 18.72 22.88 27.04 31.20 35.36	0 1137.4 1140.3 1143.1 1146.0 1148.9 1151.8 1154.8 1157.7 1160.0	KPa 0 1.83 5.47 9.10 12.70 16.29 19.86 23.42 26.95 30.46
20 40 60 80 100 120 140	0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4	0 0.0025 0.0050 0.0075 0.0100 0.0125 0.0150 0.0175 0.0200	0.5 1.5 2.5 3.5 4.5 5.5 6.5 7.5	0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00	N 0 2.08 6.24 10.40 14.56 18.72 22.88 27.04 31.20	0 1137.4 1140.3 1143.1 1146.0 1148.9 1151.8 1154.8 1157.7	KPa 0 1.83 5.47 9.10 12.70 16.29 19.86 23.42 26.95

www.ijmsrt.com DOI: https://doi.org/10.5281/zenodo.17935381 IJMSRT25NOV105 526

				ı	1		
260	2.6	0.0325	12.5	3.25	52.00	1172.7	44.34
280	2.8	0.0350	13.0	3.50	54.08	1175.7	46.00
300	3.0	0.0375	13.0	3.75	54.08	1178.8	45.88
320	3.2	0.0400	13.0	4.00	54.08	1181.8	45.76
340	3.4	0.0425	13.0	4.25	54.08	1184.9	45.64
360	3.6	0.0450	13.0	4.50	54.08	1188.0	45.52
380	3.8	0.0475	13.0	4.75	54.08	1191.2	45.40
400	4.0	0.0500	13.0	5.00	54.08	1194.3	45.28
420	4.2	0.0525	13.0	5.25	54.08	1197.4	45.16
440	4.4	0.0550	13.0	5.50	54.08	1200.6	45.04
460	4.6	0.0575	13.0	5.75	54.08	1203.8	44.92
480	4.8	0.0600	13.0	6.00	54.08	1207.0	44.81
500	5.0	0.0625	13.0	6.25	54.08	1210.2	44.69
520	5.2	0.0650	13.0	6.50	54.08	1213.4	44.57
540	5.4	0.0675	13.0	6.75	54.08	1216.7	44.45
560	5.6	0.0700	13.0	7.00	54.08	1220.0	44.33
580	5.8	0.0725	13.0	7.25	54.08	1223.3	44.21
600	6.0	0.0750	13.0	7.50	54.08	1226.6	44.09
620	6.2	0.0775	13.0	7.75	54.08	1229.9	43.97
640	6.4	0.0800	13.0	8.00	54.08	1233.2	43.85
660	6.6	0.0825	13.0	8.25	54.08	1236.6	43.73
680	6.8	0.0850	13.0	8.50	54.08	1240.0	43.61
700	7.0	0.0875	13.0	8.75	54.08	1243.4	43.69
720	7.2	0.0900	13.0	9.00	54.08	1246.8	43.38
740	7.4	0.0925	13.0	9.25	54.08	1250.2	43.26
760	7.6	0.0950	13.0	9.50	54.08	1253.7	43.14
780	7.8	0.0975	13.0	9.75	54.08	1257.1	43.02
800	8.0	0.1000	13.0	10.00	54.08	1260.6	42.90
820	8.2	0.1025	13.0	10.25	54.08	1264.1	42.78
840	8.4	0.1050	13.0	10.50	54.08	1267.7	42.66
860	8.6	0.1075	13.0	10.75	54.08	1271.2	42.54
880	8.8	0.1100	13.0	11.00	54.08	1274.8	42.42
900	9.0	0.1125	13.0	11.25	54.08	1278.4	42.30
920	9.2	0.1150	13.0	11.50	54.08	1282.0	42.18
940	9.4	0.1175	13.0	11.75	54.08	1285.6	42.06
960	9.6	0.1200	13.0	12.00	54.08	1289.3	41.95
					MAXIMUM STRESS	AXIAL	45.88 KPa
					AXIAL ST FAILURE	ΓRAIN AT	0.0375

5.3 Consolidation Tests:

Consolidation tests were carried out on undisturbed samples at 3 m depth for BH01 and BH02. Test results show progressive decreases in void ratio with increasing effective stress for both BH01 and BH02. The e-logo curves (already plotted in Table 5a and 5a) illustrate classical normal compression behavior.

For BH01 at 3 m depth: Normally Consolidated Soft Clay Key indicators:

- Initial void ratio, $e_0 = 0.97$
- Final void ratio at 1,629.75 kPa = 0.57
- The steep slope indicates high compressibility.
- Compressibility Index $C_c = 0.197 \rightarrow medium$ compressibility
- Recompression Index $C_r = 0.048 \rightarrow low$ swelling potential
- Preconsolidation Pressure P_C = 50 kPa → soil is normally consolidated
- Permeability $k \approx 10^{-9} 10^{-10}$ cm/s \rightarrow extremely low permeability
- Coefficient of Consolidation $C_V \approx 2 \times 10^{-5} 7 \times 10^{-5} \text{ cm}^2/\text{s} \rightarrow \text{slow consolidation}$

Engineering Interpretation

The BH01 clay at 3 m is weak, soft, and highly compressible. Structures founded at this depth will undergo:

- Significant primary settlement
- Long consolidation periods
- Sensitivity to changes in loading
- Difficulty dissipating pore pressure

This layer is inadequate for shallow foundations.

For BH02 at 3 m depth: Overconsolidated Clay with Moderate

Compressibility Key indicators:

- Initial void ratio, $e_0 = 1.03$
- Final void ratio = 0.75, indicating even higher compressibility than BH01.
- Compressibility Index C_c = 0.211 → medium compressibility (slightly higher than BH01)
- Recompression Index $C_r = 0.028 \rightarrow low elastic rebound$
- Preconsolidation Pressure P_C = 95 kPa → soil is over-consolidated
- Permeability $k \approx 10^{-8} 10^{-9}$ cm/s \rightarrow low permeability
- Coefficient of Consolidation $C_V \approx 2 \times 10^{-4} 3 \times 10^{-4} \text{ cm}^2/\text{s} \rightarrow \text{faster}$ consolidation The higher void ratio in BH02 reflects a more waterlogged and weaker clay deposit.

Engineering Interpretation

BH02 clay is stiffer and undergoes faster settlement compared to BH01 due to higher preconsolidation pressure. Although compressible, the soil will behave more predictably and settle less under load.

This depth may support light structures, but settlement checks remain necessary.

5.4 Integration of SPT and Consolidation Results

A comparison of SPT and consolidation behaviour reveals:

- Soft clays (upper 0–6 m) with low N-values and high Compressibility Index C_C confirm a highly compressible surface layer.
- Medium sands in the intermediate zone (N = 12–39) provide improved bearing characteristics but still exhibit moderate settlement risk.
- Dense to very dense sands below 12 m provide optimal end-bearing resistance, with settlement negligible under typical building loads.

Hence, the deeper sandy layer is suitable for endbearing piles because of its moderate to firm shear strength; however, settlement may still occur in the upper clay due to its compressible nature.

5.5 Foundation Engineering Implications5.5.1 Unsuitability of Shallow Foundations

Due to soft, normally consolidated clay at 3–6 m, shallow foundations would experience:

- Excessive settlement.
- Long consolidation times
- Risk of differential settlement
- Low bearing capacity

5.5.2 Suitability of Deep Foundations

The sand layers below 12 m show:

- High N-values (20–81)
- High stiffness and density
- Low compressibility
- Good drainage

Hence, pile foundations terminating in the dense sand are recommended.

5.5.3 Negative Skin Friction

Because the upper clays will consolidate over time, piles may experience downward drag forces. Engineering mitigation measures include:

- Use of PVC sleeve along pile shafts
- Increasing pile section diameter or reinforcement
- Considering drag load in capacity calculations

7	Fable 5a:	ONE-DIMENSI	ONAL COMPRESS	ION TES	ST – ASTM D243	35			
			PR0JECT INFORMATION						
Na	ame:								
Cl	lient:		J'Marvy Merchandises						
Lo	ocation		Gbarian (Yenagoa	Clan,					
					<u>Test</u> <u>Details</u>				
W	eight	Thickness	Before Test Moisture	Wet	Dry				
M	H	Content						l l	
(g)	(c m)	(%)							
	2.00	39.22							

		Test Results		
Vertical Load (KN)	Effective Stress	Voids Ratio	Coefficient of	Permeability
	(KPa)		Consolidation C _V (cm ² /sec)	(cm/sec)
0.1	50.93	0.97	0.00003	4.5915E-09
0.2	101.86	0.92	0.00003	1.7306E-09
0.4	203.72	0.85	0.00002	6.2081E-10
0.8	407.44	0.76	0.00003	5.2713E-10
1.6	814.87	0.66	0.00004	3.2456E-10
3.2	1629.75	0.57	0.00007	2.9208E-10
1	10	VERTICAL EFFECTIVE 100	1000	
				
				
4				
4				
<u>o</u>				
VOIDS RATIO				
S. L				
>				
	- thillies Is also C	=	0.197	
			1 0197	
	essibility Index C _C pression Index C _r	<u>-</u>	0.048	

Name	Thickness H e (cm)	Gbarian Classes Before Test Moistur Density Content (%) 39.22 Effective Street (KPa)	(g/cm	igoa. et nsity	Dry e (g/cm³) 1.83 Test Results		Conter		;	Sample Condition: <u>After Test</u> Wet Density	Uı	ndisturbed ry Density M
Weight Thickness Refere Test Density Density	s H e (cm)	Moistur Density Content (%) 39.22 Effective Street (KPa)	(g/cm	nsity	Dry e (g/cm³) 1.83 Test Results		Conter		,	Wet Density	Di	
100.0 2.00 39.22 2.55 1.83 36.26 2.49 1.83	2.00	39.22 Effective Stre (KPa) 50.93	2.55	n³)	1.83 Test Results					(g/cm ³)		(g/cm³)
Test Results Voids Ratio Coefficient of Permeabilit (KN) (KPa) Consolidation C _V (cm ² /sec) y (cm/sec)		Effective Stro (KPa)			Test Results		36.26					
Voids Ratio Coefficient of Permeabilit (KN) Cosolidation Cy (cmi/sec) y (cmi/sec) Cy (cmi/sec) y (cmi/sec) Cy (cmi/sec) y	Load	(KPa) 50.93	ess							2.49	1	.83
Consolidation V (cm/sec) V (cm/sec)		50.93			Voids Ratio				-	Coefficient of		Permeabilit
0.2 101.86 1.00 0.00020 1.2037E-08 0.4 203.72 0.95 0.00019 5.8037E-09 0.8 407.44 0.89 0.00022 3.4297E-09 1.6 814.87 0.83 0.00033 2.6213E-09 3.2 1629.75 0.75 0.00029 1.1744E-09 Test Output Graph Compression Curve VERTICAL EFFECTIVE STRESS (KPA) 1 10 100 1000 Compression Index Cr = 0.0218 Recompression Index Cr = 0.028 Preconsolidation Pressure Pc (KPa) = 95										Consolidation C _V (cm ² /sec)		y (cm/sec)
0.4		101.86		\vdash	1.03				\dashv	0.00020		3.4758E-08
0.4				+							\dagger	
1.6				\vdash							$^{+}$	
1.6				\vdash							H	
1 1629.75 0.75 0.00029 1.1744E-09				+							\vdash	
Test Output Graph Compression Curve 1 10 100 1000 Compressibility Index Cc Recompression Index Cr Preconsolidation Pressure Pc (KPa) = 95				\vdash		\dashv					-	
Compressibility Index C _C = 0.211 Recompression Index C _T = 0.028 Preconsolidation Pressure P _C (KPa) = 95					<u> </u>		⊜	•	_	-	0)	
Compressibility Index C _C = 0.211 Recompression Index C _T = 0.028 Preconsolidation Pressure P _C (KPa) = 95	9											
9.0	Comp Recor	npression Index C _I	•	KPa	=					0.028		
9.0												
	0.6											
						+						
	0.1					+						
						+						
						+						
		Comp Recor Preco	Compressibility Index C Recompression Index C _I Preconsolidation Pressu	Compressibility Index Cc Recompression Index Cr Preconsolidation Pressure Pc	Compressibility Index Cc Recompression Index Cr Preconsolidation Pressure Pc (KPa	Compressibility Index Cc Recompression Index Cr Preconsolidation Pressure Pc (KPa) =	Compressibility Index C _C = Recompression Index C _T = Preconsolidation Pressure P _C (KPa) =	Compressibility Index Cc Recompression Index Cr Preconsolidation Pressure Pc (KPa) =	Compressibility Index Cc Recompression Index Cr Preconsolidation Pressure Pc (KPa) =	Compressibility Index C _C = Recompression Index C _T = Preconsolidation Pressure P _C (KPa) =	Compressibility Index Cc Recompression Index Cr Preconsolidation Pressure Pc (KPa) = 95	Compressibility Index Cc

www.ijmsrt.com
DOI: https://doi.org/10.5281/zenodo.17935381 IJMSRT25NOV105 531

5.6 Derived Parameters and Allowable Bearing Pressure Estimates

BH01 at 3.0m depth:

- Undrained shear Strength $(S_u) = 29.53$ KPa.
- Ultimate bearing capacity (qult) = 151.8 KPa.
- Allowable bearing Pressure (qallow) = 50.6 KPa. BH01 at 6.0 m:
- Undrained shear Strength $(S_u) = 34.765$ KPa.
- Ultimate bearing capacity (qult) = 178.7 KPa.
- Allowable bearing Pressure (qallow) = 59.6 KPa. BH02 at 3.0 m.
- Undrained shear Strength $(S_u) = 15.075$ KPa.
- Ultimate bearing capacity (qult) = 77.5 KPa.
- Allowable bearing Pressure (qallow) = 25.8 KPa. BH02 at 6.0 m:
- Undrained shear Strength $(S_u) = 22.94$ KPa.
- Ultimate bearing capacity (qult) = 117.9 KPa.
- Allowable bearing Pressure (qallow) = 39.3 KPa.

6.0.Recommendations

Foundations within the weak clay layer (0–6 m), should be avoided.

The UCS results indicate soft clays with low shear strength. Differential settlement may occur if shallow foundations are placed within the compressible layers

- 1. Found the structure on the dense/very dense sand layers at ≥ 9 m depth. Friction angles of $41-46^{\circ}$ indicate significantly high bearing capacity. Recommended foundation types: Driven piles, bored cast-in-situ piles, or deep strip or raft foundations (if clay thickness is removed or improved).
- **2.** If shallow foundations must be used, ground improvement is necessary.

Suitable methods: Preloading/surcharging, Vibro-compaction, Dynamic compaction (where feasible), Stone columns, or Replacement with engineered fill.

3. Maintain adequate drainage around the structure to prevent softening of upper clay layers, ensure proper site grading, surface water control, and subsurface drainage.

6.0 Summary and Conclusion

The geotechnical investigation revealed a stratified profile consisting of soft–firm clay in the shallow depths (0–6 m) underlain by dense to very dense sands from 9 m downward. Direct shear tests recorded high friction angles (40.7–45.9°) across both boreholes, confirming strong load-bearing characteristics of the deeper sandy strata.

UCS values of 59–70 kPa for shallow clays indicate weak, compressible soils that are unsuitable for heavy structural loads. Consequently, placing foundation within this clay layer would pose settlement risks.

The deeper sandy strata (≥ 9 m), characterized by high φ values and dense packing, are suitable

and recommended for bearing structural loads using deep foundations such as driven or bored piles.

Overall, the site is geotechnically favorable for construction, provided foundations bypass the weak upper clays and are anchored in the dense sand layers. Proper drainage and possible ground improvement will further enhance long-term stability.

References

Adebayo, H. O., & Olofinyo, A. O. (2017). Geotechnical characterization of deltaic soils for foundation applications. Nigerian Journal of Geoscience, 7(2), 45–59.

Akpokodje, E. G. (1987). The engineering geological characteristics of the Niger Delta soils. Engineering Geology, 23(4), 193–211.

American Society for Testing and Materials. (2020). ASTM D1586: Standard Test Method for Standard Penetration Test (SPT) and Split-Barrel Sampling of Soils. ASTM International.

British Standards Institution. (1990). BS 1377: Methods of test for soils for civil engineering purposes. Parts 4 and 7. London: BSI.

Budhu, M. (2011). Soil mechanics and foundations (3rd ed.). Wiley.

Clayton, C. R. I., Matthews, M. C., & Simons, N. E. (1995). Site investigation (2nd ed.). Blackwell Science.

Das, B. M., & Sobhan, K. (2014). Principles of geotechnical engineering (8th ed.). Cengage Learning.

Lambe, T. W., & Whitman, R. V. (1979). Soil mechanics. John Wiley & Sons.

Look, B. G. (2014). Handbook of geotechnical investigation and design tables. CRC Press.

Murthy, V. N. S. (2003). Geotechnical

engineering: Principles and practices of soil mechanics and foundation engineering. Marcel Dekker.

Osinowo, O. O., & Oladunjoye, M. A. (2018). Geotechnical challenges in the Niger Delta sediments. Nigerian Journal of Geology, 54(2), 125–140.

Oyedele, K. F., & Okoh, C. I. (2011). Geotechnical evaluation of some coastal soils in the Niger Delta for engineering design and construction. Journal of Earth Sciences, 5(3), 122–131.

Short, K. C., & Stauble, A. J. (1967). Outline geology of the Niger Delta. AAPG Bulletin, 51(5), 761–779