
Volume-3,Issue-5, May 2025 International Journal of Modern Science and Research Technology
ISSN-NO-2584-2706

IJMSRT25MAY044 www.ijmsrt.com
 DOI: https://doi.org/10.5281/zenodo.15473023

224

Comparative Analysis for Web Development Performance in

Node.JS and Python Technologies

Abstract:

Anuradha Muttemwar; Yash Likhar; Rushikesh Bagade

Department of MCA, G H Raisoni College of Engineering and Management, Nagpur, India

building high performance and scalable network

In the actual world of contemporary web

development, the selection of backend

technologies is crucial to the scalability,

efficiency, and performance of applications.

Node.js and Python are two of the most popular

technologies for web application development,

each with different strengths based on the use

case. This review paper compares Node.js and

Python performance in web development based

on important parameters like processing speed,

scalability, concurrency handling, resource

utilization, and ecosystem maturity. By analysing

real-world use cases, and community adoption

trends, the main aim of this study is to provide

guide for the developers and organizations in

selecting the appropriate technology for their

projects.

Keywords: Backend technologies, Scalability,

Efficiency, Performance, Node.js, Python, Web

applications, Processing speed, Scalability

1. Introduction

Web development has also changed significantly

in recent times due to technological

advancements, pressure from users, and growing

dependence on the internet. Sites must be secure,

safe, scalable and provide better user experiences

on all platforms along with being functional.

Python and Node.js are two technologies that

have become very popular when it comes to

online development, particularly backend

development. Node.js is built on the open-source

V8 high-performance JavaScript engine of

Google. It converts JavaScript functions into

machine codes with high performance and pace

[6]. Node.js provide outstanding performance in

applications, it uses event-driven, non-blocking

input output and asynchronous paradigm [6].

Python is a free, general-purpose, high-level, and

easily comprehensible programming language.

For web development, automation, machine

learning, data analysis, software development,

and artificial intelligence (AI) applications,

Python is one of the most popular programming

languages use in current time [2]. Owing to its

simplicity in usage and huge support that it has by

the way of excellent sets of libraries and

frameworks, Python has emerged as one of the

most common programming languages to date

following its invention by Guido van Rossum in

the late 1980s and release in the year 1991.

Node.js's asynchronous, event-driven design and

Python, which is an adaptable programming

language with the Flask and Django frameworks,

are frequently matched up for web development

performance. This review article explores the

processes involved in website development, the

evolution of Content Delivery Networks (CDNs),

historical usage of websites, mobile website

optimization, and provides a comparative study of

Node.js using Express and Python using Flask

[2].

2. Literature Review

With the advancement of web development

technologies, Node.js and Python are two

prominent options. With the V8 engine of

Chrome, Node.js is described to be event-driven

and non-blocking in character and excels in

handling a lot of connections simultaneously [7].

Python itself is an adaptable and open language

with strong frameworks like Django and Flask

that accelerate development. These systems have

Volume-3,Issue-5, May 2025 International Journal of Modern Science and Research Technology
ISSN-NO-2584-2706

IJMSRT25MAY044 www.ijmsrt.com
 DOI: https://doi.org/10.5281/zenodo.15473023

225

been placed in perspective by studies on their

efficiency, scalability, concurrency, and speed.

Node.js's asynchronous and high-throughput

design make it appropriate for real-time

applications as posited by the researchers,

whereas Python's interpretive nature makes it

inappropriate for CPU-bound work but highly

efficient in data processing applications [7].

Python is also crippled by the Global Interpreter

Lock (GIL), which prevents it from executing

code concurrently, while Node.js can take

advantage of concurrency through the use of an

event loop. There are also security distinction

differences in regards to considerations; Node.js

needs extra security provisions to handle

dependencies, while Python frameworks

incorporate built-in security provisions [9].

As case studies suggest, libraries such as

Instagram and Dropbox utilize Python's high-level

data-handling features, while Netflix and PayPal

prefer Node.js in situations of high concurrency.

Either Node.js or Python usage is based on the

project requirements; Python would be better for

secure and scalable web solutions, while Node.js

would be better for high-concurrency real-time

solutions. Hybrid solutions based on both

technologies' strengths could be investigated

further [5].

3. Process Involved In Creating A Website

Web development is a process of repetition where

care has to be taken at every step towards making

the final product scalable, functional, and usable.

The very first steps in web development are:

1. Planning and Research: Target audience,

purpose, and minimum requirements of the

website are determined prior to development.

Wireframes are defined, user flow defined, and

content requirements gathered under this step.

2. Design: In this, UI and layout is planned,

typography and color are selected, and visual

mockups are created. Adobe XD, Sketch, and

Figma are most commonly used.

3. Frontend Development: Frontend parts of the

site which are user intractable are created here.

Client-side website is created based on frontend

technology such as HTML, CSS, and

JavaScript (with libraries being React, Angular,

or Vue).

4. Backend Development: Server-side executes

business logic, database operations, and APIs

during this development. Some of the most

popular backend development frameworks are

PHP, Ruby on Rails, Python, and Node.js.

5. Quality Assurance and Testing: The site is

tested strictly on performance, usability,

security, and functionality during development.

These are predominantly standard, i.e., unit

testing, integration testing, and user acceptance

testing.

6. Deployment: Tested and validated, a site is

deployed on a server. In hosting, one uses

platforms such as Heroku, Google Cloud, and

AWS.

7. Maintenance: Regular monitoring, debugging,

content update, and performance optimization

for maintaining the site up to date and in

running mode after deployment.

4. Execution Time And Speed

Speed of execution of the backend is quite likely

the single most critical consideration in web

development. Node.js tends to out sweep

Python for sheer speed at many operations, at

least that's what's suggested by performance

benchmarks, especially for handling many

requests simultaneously.

 Node.js Performance: Node.js can handle

many requests concurrently because it is non-

blocking and has an event-loop. Because it has

an event-loop with a single thread, it is very

effective with calls that yield I/O-bound like

API calls and database reads.The V8 JavaScript

runtime even ahead-of-time compiles

Volume-3,Issue-5, May 2025 International Journal of Modern Science and Research Technology
ISSN-NO-2584-2706

IJMSRT25MAY044 www.ijmsrt.com
 DOI: https://doi.org/10.5281/zenodo.15473023

226

JavaScript into machine code in a bid to reduce

runtime [4].

 Python Performance: Python is slower

because it is an interpreted language as well as

because it has Global Interpreter Lock (GIL),

which limits it to execute more than one task

within a single process. By using Python along

with other high-performance libraries or by a

multi-threaded or multi-process method, its

performance can be improved [1]

 Comparison: Node.js can handle thousands of

requests per second with ease in a basic HTTP

request-response test much ahead of Python

web frameworks such as Flask and Django,

which have lower throughputs.

5. Concurrency and Asynchronous Processing

Web applications today have to be able to

handle multiple users at once, and a capability

of the backend system to handle concurrency

can enable it to perform better.

 Concurrency Model for Node.js: Node.js is a

system that can handle many requests

simultaneously within one thread since Node.js

is designed using an event-driven, non-

blocking I/O model. It is the reason why

Node.js is especially well-fitted for applications

consisting of I/O-bound operations as well as

high-scale complexity. [8].

 Concurrency model for Python: Python

incorporates a synchronous model by default

without explicit setting for asynchronous

processing and returns requests sequentially.

Asynchronous programming is made possible

by libraries such as Python's asyncio, however

the GIL restricts the capacity to execute Python

code concurrently on many CPU cores. Python

is capable of handling concurrency at scale

when paired with multi-threading or multi-

processing models, although it is less effective

than Node.js in single-threaded contexts [8].

 Comparison: Because Node.js architecture is

event-driven and it handles asynchronous

operations better than Python, it tends to

perform better in real-time applications (such

as chat apps and real-time data feeds)

6. Scalability

Scalability is another very crucial thing to bear

in mind when creating web applications,

particularly for business organizations

anticipating large traffic growth.

 Node.js Scalability: The lightness and non-

blocking nature of Node.js allow it to be highly

scalable. Since it can handle thousands of

connections at virtually zero cost, it is best

placed to build scalable systems, most

especially micro services and APIs.

 Python Scalability: Although Python may

scale well using tools like Celery for job

queuing or Gunicorn for managing concurrent

requests, it typically needs more overhead than

Node.js to execute at comparable levels.

Although load balancing allows frameworks

like Django to scale horizontally, Python's

synchronous nature can cause problems in

settings with extremely high concurrent

requirements.

 Comparison: Node.js provides a more

effective scaling strategy for applications with

a lot of I/O and significant traffic. Large-scale

systems, however, might need additional

resources and careful architecture planning

when using Python.

7. Resource Utilization

Optimal utilization of the resources of a system

is as crucial as enhanced performance of a web

application.

 Node.js Resource Utilization: Node.js

consumes fewer system resources under loads

since it is event-based and non-blocking. It

processes a lot of requests in one thread and

Volume-3,Issue-5, May 2025 International Journal of Modern Science and Research Technology
ISSN-NO-2584-2706

IJMSRT25MAY044 www.ijmsrt.com
 DOI: https://doi.org/10.5281/zenodo.15473023

227

therefore is less resource-consuming compared

to the conventional multi-threading. [3]

 Python Resource Utilization: Python, as

opposed to Node.js, will consume more CPU

and memory, particularly if multi-threading is

turned on. Python will tend to create a new

thread for each request, thus leading to

increased resource consumption.[3]

 Comparison: Node.js is an improved resource
consumer, especially for the use of higher
concurrency in their applications.

8. Comparison Between Python Server Using

Flask And Node.Js Server With Express

Two of the robust backend technologies that are

widely used for web

application development are Node.js and Python.

Here, we are

comparing a light-weight Node.js web framework

named Express and the light-weight Python web

framework Flask.

8.1 Flask(Python)

Flask is a microframework which provides you

with the bare essentials to build web applications

but also allows you to do with other libraries or

tools what is best for your project.[1]

 Performance: Since Flask is relying on GIL

(Global Interpreter Lock) and Python is

interpreter-based, Flask lags behind Node.js in

overall performance. [1]

 Usability: Flask is lightweight and easy to use

for today's Python programmers. Flask has

more organization of applications and

flexibility. [1]

 Concurrency: Flask requests are synchronous

but asynchronous requests can also be achieved
using asyncio package.

 Use cases: Ideal for APIs or small and

medium-sized projects without any heavy
concurrency needed.

8.2 Express (Node.Js)

Express is a view-opinion, fast Node.js web app

framework with an excellent feature set used to

build web apps and APIs with less setup.

 Performance: Express is built to accommodate

asynchronous, event-driven Node.js execution.

Express can handle a huge number of requests

without being resource-hungry. [4]

 Ease of use: With the veteran JavaScript

programmer, the lightweight but flexible API of

Express offers an easy-to-learn API. There is an

ever-expanding infinite middle ware

community which is out there for a variety of

things. [4]

 Concurrency: Node.js is able to process

thousands of requests at a time without lagging

behind other processes, and that is precisely

how Express best does concurrency.[4]

 Use cases: May include e-commerce platforms
and messaging systems, which are perfect for

real-time, high-concurrency applications.

8.3 Key Differences:

 Speed: Node.js (Express) generally offers
faster performance and better scalability,

especially for real-time applications.[8]

 Concurrency: Node.js (Express) has superior
concurrency handling, while Flask requires

additional setup for asynchronous tasks.[10]

 Community & Ecosystem: Both frameworks

have large communities, but Express benefits

from Node.js’s dominance in real-time and

microservices applications.

9. NODE.JS VS PYTHON PERFORMANCE
Performance

Metric
Node.js Python Remarks

Execution Speed Faster (due

to non-

blocking

I/O)

Slower

(interprete

d,

synchronou
s by

Node.js is

optimized

for web

servers and
real-time

Volume-3,Issue-5, May 2025 International Journal of Modern Science and Research Technology
ISSN-NO-2584-2706

IJMSRT25MAY044 www.ijmsrt.com
 DOI: https://doi.org/10.5281/zenodo.15473023

228

 defaults.

10. Conclusion

In short, both Flask and Express are some good

advantages for web development, and the nature of

a project will be what determines the best choice.

Node.js and Express are suitable for real-time

services and microservices based on improved

performance, scalability, and support for high-

concurrency applications. But Python and Flask is

an easy, lightweight framework that is perfect for

little projects, APIs, and apps that need to interact

with data analysis or machine learning processes.

Since the web keeps changing every day, the

developers cannot help but choose the best

technology stack available that will suit their

projects as much as possible in terms of

productivity, scalability, and performance. Both

Node.js and Python have been great web

development frameworks today with both their

infrastructures growing and reengineered to

address the needs of the users at time scales.

11. References

[1] Devndra Ghimire (May 2010) Comparative

study on Python web frameworks: Flask

and Django.

[2] Kai Lei, Yining Ma, Zhi Tan (December 2014)

Performance Comparison and Evaluation of

Web Development Technologies in PHP,

Python and Node.js.

[3] Axel Dalbard and Jesper Isacson (June 2021)

Comparative study on performance between

ASP.NET and Node.js Express for web-based

calculation tools.

[4] ISAK VILHELMSSON (July 2021) A

Performance Comparison of an Event-Driven

Node.js WebServer and Multi-Threaded Web

Servers.

[5] Debani Prashad Mishra , Kshirod Kumar Rout,

Surender Reddy Salkuti (Sep 2021) Modern

tools and current trends in web-development.

[6] Bonjar Basumatary and Nishant Agnihotri

(May 2022) Benefits and Challenges of using

Node.js.

[7] Qozeem Odeniran, Haydeen Wimmer, Carl

Rebman (2023) Node.js or PhP Determining

 default) applications.

Concurrency

Handling

Asynchrono

us, event-

driven
model

Multi-

threaded

but limited
by GIL

Node.js

handles high

concurrency
better.

Request Handling

(10k concurrent

users)

1-5 seconds

(fast)

5-20

seconds

(slower)

Node.js

scales well

with micro
services.

CPU-Intensive

Tasks (Image

Processing, ML,

AI)

Slower

(500ms - 5s)

Faster

(100ms -
2s)

Python’s

libraries

(NumPy,

TensorFlow)

outperform

Node.js in

computation
-heavy tasks.

File I/O

Operations

Faster (~10-

50ms, non-

blocking)

Slower

(~50-
200ms,

blocking by

default)

Node.js is

optimized

for async

operations.

Database Query

Speed

(MongoDB/MyS

QL)

Faster (~20-

100ms)

Slower

(~50-

300ms)

Node.js is

better

optimized

for NoSQL
databases.

Startup Time ~50-200ms ~100-

500ms

Node.js

starts

slightly
faster.

Memory Usage Lower Higher Node.js is

lightweight,

whereas

Python

consumes

more
memory.

Framework

Efficiency

Express.js

(lightweight,

fast)

Django/Fla

sk (feature-

rich, but

heavier)

Express.js is

faster, while

Django

provides

built-in

functionaliti

es.

Ease of

Development

Moderate

(async

programmin

g required)

Easier

(simple

syntax,

extensive
libraries)

Python is

more

beginner-

friendly.

Real-time

Application

Suitability

Excellent

(WebSockets
, async)

Limited

(not

designed

for real-

time)

Node.js is

preferred

for chat

apps,

streaming,

etc.

Security Good (but

requires

manual

handling)

Stronger

(built-in

security

features)

Python

frameworks

provide

better
security

Volume-3,Issue-5, May 2025 International Journal of Modern Science and Research Technology
ISSN-NO-2584-2706

IJMSRT25MAY044 www.ijmsrt.com
 DOI: https://doi.org/10.5281/zenodo.15473023

229

the better website server backend scripting

language.

[8] AVSS Somasundar, M Chilakarao, Santi

Kumari Behera, Ch Venkata Ramana (March

2024) MongoDB integration with Python and

Node.js, Express.js.

[9] Hawkar Jamal & Khalid Elkilany (June 2024)

Trends in Node.js Framework Evolution.

[10] Enes BAJRAMI , Agon MEMETI , Florim

IDRIZI , Ermira MEMETI Comparative

Analysis Of Soap And Rest Apis: Systematic

Review And Performance Evaluation With

Python

