
Volume -3,Issue-5,May2025 International Journal of Modern Science and Research Technology

ISSN NO-2584-2706

IJMSRT25 MAY043 www.ijmsrt.com
 DOI: https://doi.org/10.5281/zenodo.15472828

220

Java’s Object-Oriented Paradox: Why it’s not Purely OOP

Sandhya Dahake; Sahil Sheikh; Wilson Francis

Department of Master in Computer Application, G H Raisoni College of Engineering and Management

Nagpur, Maharashtra, India

Abstract:

In this paper authors trying to studies that Java

is not strictly object-oriented, even though it is

commonly considered an object-oriented

programming (OOP) language. Java contains

primitive data types (char, double, int, etc.) that

are not part of the object model, but a pure

OOP language considers everything as an

object. Java also departs from rigid OOP

standards by supporting static methods and

procedural programming. Features like

operator overloading and real multiple

inheritance are absent from Java in contrast to

completely object-oriented languages like

Smalltalk. Because of these drawbacks, Java is

not strictly object-oriented but rather

categorized as a hybrid language. These

features will be thoroughly examined in this

paper, along with the reasons why Java does

not entirely adhere to the rules of pure object-

oriented programming.

Keywords:

Java, Object-Oriented Programming (OOP),

Pure Object-Oriented Language, Primitive

Data Types, Procedural Programming.

1. Introduction
Among the most widely used programming

languages, Java is renowned for its resilience,

platform freedom, and strict adherence to

object-oriented programming (OOP) concepts.

Everything in a program should be represented

as an object, according to the theory behind

object-oriented programming, which supports

concepts like abstraction, polymorphism,

inheritance, and encapsulation. But in a

language that is entirely object-oriented, all

entities—including simple data types and

functions—must be regarded as objects.

Although Java is promoted as an object-

oriented language, it has a number of features

that depart from the fundamentalof OOP. Java

is not entirely object-oriented, as seen by the

usage of static methods, the existence of

primitive data types (int, char, double, etc.),

and the support for procedural programming

features. Furthermore, unlike fully object-

oriented languages like Smalltalk or Ruby,

Java lacks operator overloading and does not

support multiple inheritance through classes.

This study looks at what makes a pure object-

oriented language, how Java deviates from

these standards, and why Java should be

categorized as a hybrid programming language

instead of a totally object-oriented one.

2. Background

By grouping code into objects, the

programming paradigm known as object-

oriented programming (OOP) encourages

modularity, reusability, and maintainability.

All data types and functions are treated as

objects in a totally object-oriented language,

which rigorously adheres to the fundamental

OOP concepts of abstraction, polymorphism,

inheritance, and encapsulation. The fact that

languages like Smalltalk and Ruby do not

permit non-object elements makes them

entirely object-oriented. Java was created as a

high-level, platform-independent, and secure

programming language and was first released

by Sun Microsystems in 1995. It uses

procedural programming components for

flexibility and speed optimization, even if it

adheres to OOP

essential characteristics as a hybrid language

that combines procedural and object-oriented

programming ideas [5].

In order to prove that Java is not a solely

object-oriented programming language, this

Volume -3,Issue-5,May2025 International Journal of Modern Science and Research Technology

ISSN NO-2584-2706

IJMSRT25 MAY043 www.ijmsrt.com
 DOI: https://doi.org/10.5281/zenodo.15472828

221

paper examines Java's non-OOP features,

contrasts them with those of other

languages, and provides evidence.

4. Methodology

The reason Java is not a strictly object-

oriented programming language is examined

in this research article using a theoretical and

comparative analysis technique. The

following are the main steps in the

methodology:

4.1 Literature Review:

A comprehensive analysis of scholarly

works, books, and official Java

documentation was done in order to

comprehend the fundamentals of Object-

Oriented Programming (OOP) [2] and how

Java applies them [1], [4].

4.2 DefiningPureObject-Oriented

Characteristics:

Characteristics of a purely object-oriented

language were specified in order to create a

clear evaluation framework. These consist of:

4.2.1 Everything must be an object:

Even basic values like characters and

numbers should be objects in a pure OOP

language [3]. Nevertheless, Java contains

primitive data types that are not objects,

like int, double, and char [6]. In java,

int x = 10;

In contrast, a pure OOP language like

Smalltalk treats everything, even numbers, as

objects [3].

4.2.2 No primitive data types:

To wrap primitives as objects, Java has

wrapper classes like Integer and Double;

nevertheless, this is merely a workaround and

not a true OOP solution [4].

Integer y = 20;

Java still permits the direct use of primitive

types, though, which goes against the

fundamentals of OOP[6].

4.2.3 No static methods or procedural

programming constructs:

Java permits static methods to be called

without first generating an object, however in a

pure OOP language, all methods should be a

component of objects [1], [5].

class Example {

static void showMessage(){

System.out.println("This is a static method.");

}

}

public class Main {

public static void main(String[] args) {

Example.showMessage();

}

}
This breaks the object-oriented approach since

showMessage() is not associated with an

instance of Example .

4.2.4 OperatorOverloadinAndMultipleInanc

e:

Java does not support operator overloading,

unlike C++. Also, Java does not allow multiple

inheritance through classes, only via interfaces

[3].

4.3 Comparative Analysis:

To identify differences, Java's characteristics

were contrasted with those of strictly object-

oriented languages like Smalltalk and Ruby

[3]. Java's designation as a hybrid language

was aided by this investigation [5].

4.4 Code-Based Evaluation:

The following are some examples that were

used to demonstrate Java's non-object-oriented

programming features:

 The existence of primitive data types (int,
double, etc.) [6].

 The use of static methods and variables [1],
[5].

 The ability to write procedural-style code
within the main() method [5].

 The absence of operator overloading and
multiple inheritance through classes [1], [3].

4.5. Conclusion Based on Findings:

The evidence that was gathered was

reviewed to confirm that Java, despite being

heavily object-oriented, has aspects that are

not object-oriented, which prevents it from

Volume -3,Issue-5,May2025 International Journal of Modern Science and Research Technology

ISSN NO-2584-2706

IJMSRT25 MAY043 www.ijmsrt.com
 DOI: https://doi.org/10.5281/zenodo.15472828

222

being classed as a language that is purely in

the object-oriented category [5].

5. Result And Discussion

Java cannot be categorized as entirely object-

oriented when its characteristics are

compared to the requirements for a purely

object-oriented language [3]. Java's design

choices contain a number of non-object-

oriented components that are more in line

with procedural programming, even though

the language strongly supports object-

oriented programming concepts [5].

5.1 Primitive Data Types:

The pure OOP tenet that everything should be

an object is directly violated by Java's support

for primitive types like int, char, double, and

boolean [6]. Like,

int number=5;

In contrast, purely object-oriented languages

like Smalltalk represent even numbers as

objects [3].

5.2 Static Methods and Variables:

Variables and methods can be specified as

static in Java, which means they belong to the

class and not any instance of an object. The

object-oriented tenet that all behavior should

belong to objects is broken by this procedural

activity [1], [5]. For example:

class Utility { static void displayMessage() {

System.out.println("Static method called");

}

}

Here, displayMessage() can be called without

creating an object of Utility.

5.3 Procedural Programming Support:

It is possible to write code in a totally

procedural way, where no objects are created,

using Java's main() function, which acts as the

program entry point. Although this flexibility is

useful, it goes against the idea of pure OOP [5].

For Example:

public class Main { public static void

main(String[] args) {

System.out.println("Hello, world!");

}

}

In contrast to pure OOP languages, where all

activities must take place through objects, no

objects are needed in order to print a message.

5.4 Lack of Operator Overloading:

Unlike C++ or Smalltalk, Java does not allow

operators like +, -, *, etc. to be overloaded to

operate with custom objects [1], [3]. This

lessens Java's commitment to true OOP and

limits the expressiveness of objects [5].

5.5 No True Multiple Inheritance:

As a design tradeoff to prevent ambiguity, Java

only permits multiple inheritance through

interfaces rather than classes [1]. Although this

method is effective, pure OOP systems like

Smalltalk permit multiple inheritance directly

through classes, therefore it is not a completely

object-oriented feature [3].

6. Conclusion

Although Java is frequently referred to as an

object-oriented language, a closer look reveals

that Java is not entirely object-oriented [5].

Everything, including basic data types and

functions, must be handled as an object in a

language that is exclusively object-oriented.

However, Java provides primitive data types that

are not part of the object paradigm, such as int,

char, and double [6]. Additionally, it violates the

fundamental object-oriented tenet that behavior

should belong to objects by permitting static

methods to be called without first generating

objects [1], [5].

Java also doesn't have operator overloading

[1], only allows multiple inheritance for

interfaces [3], and supports procedural

programming with its main () function [5].

These characteristics, which combine

procedural and object-oriented programming

techniques, are more in line with hybrid

programming.

These design decisions shift Java away from

being solely object-oriented even though they

improve simplicity and efficiency. In order to

meet the demands of real-world programming,

Java is best categorized as a hybrid language,

combining procedural freedom with object-

oriented strength [5].

Volume -3,Issue-5,May2025 International Journal of Modern Science and Research Technology

ISSN NO-2584-2706

IJMSRT25 MAY043 www.ijmsrt.com
 DOI: https://doi.org/10.5281/zenodo.15472828

223

7. References

[1] J. Gosling, B. Joy, G. Steele, G. Bracha,

and A. Buckley, The Java Language

Specification, Oracle, 2020. [Online].

Available:

https://docs.oracle.com/javase/specs/

[2] H. Schildt, Java: The Complete

Reference, 11th ed. New York: McGraw-

Hill Education, 2018.

[3] Kay, “The Early History of Smalltalk,”

ACM SIGPLAN Notices, vol. 28, no. 3, pp.

69–95, Mar. 1993, doi:

10.1145/155360.155364.

[4] Oracle, Java Tutorials: Object-Oriented

Programming Concepts, 2024. [Online].

Available:

https://docs.oracle.com/javase/tutorial/java/c

oncepts/

[5] Smith, J. (2020). "Analyzing Object-

Oriented and Procedural Features in Java."

Proceedings of the International

Conference on Software Engineering

(ICSE).

[6] Miller, R., & Davis, L. (2018).

"Primitive Data Types in Java: A Challenge

to Object-Oriented Purity." IEEE

Symposium on Programming Paradigms.

[7] Stroustrup, B. (2013). The C++

Programming Language, 4th ed. Addison-

Wesley.

[8] Bloch, J. (2018). Effective Java, 3rd ed.

Addison-Wesley.

[9] Gamma, E., Helm, R., Johnson, R., &

Vlissides, J. (1994). Design Patterns:

Elements of Reusable Object-Oriented

Software. Addison-Wesley.

[10] Oracle. (2024). "Java and Multiple

Inheritance: Design Choices and

Limitations." [Online]. Available:

https://docs.oracle.com/javase/tutorial/java/I

andI/multipleinheritance.html

[11] Lee, K., & Anderson, P. (2019). "Static

Methods and Procedural Programming in

Java: An OOP Trade-off." Journal of

Software Engineering Studies, vol. 15, no. 2,

pp. 45-58.
[12] "Why doesn't Java offer operator

overloading?" Stack Overflow, 2008.

[Online].Available:

https://stackoverflow.com/questions/77718/

why-doesnt-java-offer-operator-overloading

[13] A. Obregon, "A Guide to Object-

Oriented Programming in Java," Medium,

2023.[Online].Available:

https://medium.com/@AlexanderObregon/a-

guide-to-object-oriented-programming-in-

java-89dc4544837f

https://docs.oracle.com/javase/tutorial/java/IandI/multipleinheritance.html
https://docs.oracle.com/javase/tutorial/java/IandI/multipleinheritance.html
https://stackoverflow.com/questions/77718/why-doesnt-java-offer-operator-overloading
https://stackoverflow.com/questions/77718/why-doesnt-java-offer-operator-overloading
https://medium.com/%40AlexanderObregon/a-

