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Abstract— This paper investigates the 

application of Wasserstein Generative 

Adversarial Networks with Gradient Penalty 

(WGAN-GP) for generating synthetic urban 

layouts using Open Street Map (OSM) tile 

datasets from Gurugram, India, and 

California, USA. We trained the WGAN-GP 

model on a dataset of 1000-2000 RGB tiles 

(256x256 pixels) over 50-100 epochs, 

constrained by the 12-hour runtime limit of 

Google Colab’s free tier with a T4 GPU. 

Initial outputs exhibit noisy, pixilated 

patterns lacking distinct urban features such 

as roads, residential blocks, or green spaces, 

primarily due to limited dataset size, 

insufficient training duration, and hyper 

parameter instability. Training logs reveal 

fluctuating losses (e.g., Generator Loss: - 

25.9219, Discriminator Loss: -16.3594 at 

Epoch 50), indicating training imbalance. 

Visualizations of generated layouts for 

Gurugram and California highlight slight 

diversity improvements in the latter but 

persistent abstractness. We propose 

enhancements including scaling the dataset 

to 5000 tiles, extending training to 100+ 

epochs using Colab Pro or local GPUs, and 

optimizing hyperparameters such as 

discriminator steps (disc_steps) and gradient 

penalty weight (gp. weight). This study 

establishes a foundation for scalable urban 

Layout synthesis, with potential applications 

in urban planning, traffic simulation, and 

generative AI research. It also underscores 

Google Colab’s computational constraints as 

a critical challenge for academic researchers, 

offering insights into low-cost deep learning 

workflows. 

 

Keywords—Generative Adversarial 

Networks, WGAN-GP, Urban Layouts, 

Open Street Map, Google Colab, Urban 

Planning, Geospatial AI, Deep Learning 

 

I. Introduction 

A. Background 

Generative Adversarial Networks (GANs), 

introduced by Good fellow et al. [1], have 

transformed the field of synthetic image 

generation, enabling applications from 

photorealistic faces to artistic landscapes. 

The Wasserstein GAN with Gradient 

Penalty (WGAN-GP) [2] addresses key 

limitations of vanilla GANs, such as 

vanishing gradients and mode collapse, by 

enforcing Lipschitz continuity through a 

gradient penalty term. Urban planning, a 

domain increasingly reliant on data-driven 

solutions, benefits from synthetic geospatial 

data for simulation, optimization, and 

privacy-preserving analysis. Open Street 

Map (OSM), a crowd-sourced geospatial 

database, provides a rich source of urban 
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layout tiles, capturing roads, buildings, and 

parks across diverse cities. 

Recent advancements in AI-driven urban 

modeling have sparked interest in generating 

synthetic city layouts to overcome real- 

world data limitations, such as incomplete 

coverage in developing regions or privacy 

restrictions in developed ones. Cities like 

Gurugram, a rapidly urbanizing hub in India, 

and California, with its sprawling urban and 

suburban areas, present unique challenges 

and opportunities for such generative 

models. 

B. Problem Statement 

Real-world urban datasets often suffer from 

sparsity, high acquisition costs, and ethical 

concerns (e.g., exposing private property 

layouts). For instance, Gurugram’s OSM 

data lacks uniformity due to inconsistent 

mapping, while California’s data, though 

denser, is computationally intensive to 

process. Synthetic urban layouts could 

address these issues, but existing generative 

models struggle to produce high-quality, 

diverse city maps with clear structural 

features under resource-constrained 

environments like Google Colab. 

 

C. Objective 

This study aims to leverage WGAN-GP to 

synthesize realistic 2D urban layouts from 

OSM tiles of Gurugram and California, 

targeting identifiable features such as road 

networks, residential blocks, and green 

spaces. We seek to achieve this within 

Colab’s free tier limits, making the approach 

accessible to academic researchers. 

 

D. Contribution 

Our contribution to this research paper 

includes: 

1. Developing a WGAN-GP model tailored 

for OSM-based urban layouts. 

2. Analyzing the impact of dataset size and 

training duration on output quality. 

3. Proposing a scalable workflow within 

Colab’s constraints. 

4. Laying the groundwork for future urban 

AI applications. 

 

E. Paper Organization 

This paper is structured as follows: Section 

II reviews related work on GANs and urban 

modeling; Section III details our 

methodology, including dataset preparation 

and model design; Section IV presents 

training results and generated layouts; 

Section V discusses findings and 

implications; Section VI concludes with 

future directions; and Section VII 

acknowledges support. 

 

Related Work 

A. GANs  in  Image  Synthesis 

GANs have excelled in image generation, 

from faces [5] to landscapes [10]. WGAN- 

GP [2] improves stability over vanilla 

GANs, making it suitable for complex 

datasets. Its applications range from high- 

resolution images [11] to medical imaging 

[12], but geospatial synthesis remains 

underexplored. 

 

B. Urban Modeling with GANs 

City GAN [3] generates stylized city scapes, 

while Urban GAN [4] focuses on 3D urban 

structures, both requiring large datasets and 

powerful hardware. OSM-based models 

typically address traffic prediction [6] or 

semantic segmentation [7], not synthetic 

layout generation. Our work adapts WGAN- 

GP for 2D urban layouts under Colab 

constraints. 

C. Comparison with Existing Studies 

Table I compares our approach with prior 
work: 
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Model Dataset Size Output Size Compute Resources Constraints Addressed 

CityGAN [3] 10,000+ 2D Multi GPU None 

UrbanGAN [4] 5,000+ 3D High-End Resources None 

Ours 2,000 2D OSM Colab Free Tier Runtime 

 

Fig. 1. Comparing other GAN-based models. 

Our study uniquely tackles low-cost urban 

synthesis. 

 

I. Methodology 

A.Dataset 

We collected OSM tiles (256x256 pixels, 

RGB) from Gurugram (1000 tiles) and 

California (2000 tiles) using Contextily and 

OSMnx libraries. Gurugram tiles reflect a 

dense, chaotic urban fabric with mixed 

residential and commercial zones, while 

California tiles capture suburban sprawl and 

grid-like road patterns. Tiles were fetched 

from Google Drive (/GANs-Urban-Layout), 

normalized to [-1, 1], and augmented with 

random flips, brightness adjustments (±0.2), 

and contrast shifts (±0.15) to enhance model 

generalization. Figure 1 shows sample tiles 

from both regions. 

Fig.2.Sample OS Miles: California with 
 

grid-like suburban layout. 
 

Fig.3.SampleOSMTiles:Gurugram with 

dense urban patterns 

 

 

 

A. Model Architecture 

The Wasserstein Generative Adversarial 

Network with Gradient Penalty (WGAN- 

GP) employed in this study consists of two 

primary components: a Generator and a 

Discriminator, designed to synthesize urban 

layouts from random noise and evaluate their 

realism, respectively. Below, we elaborate 

on their architectures, design rationales, and 

mathematical formulations, tailored to 

process Open Street Map (OSM) tiles of size 

256x256 pixels with three RGB channels. 

The WGAN-G Comprises Generator and 

discriminator 1 

1. Generator: 

The generator is tasked with transforming a 

latent noise vector into a synthetic urban 

layout image. It begins with a 128- 

dimensional noise vector sampled from a 

normal distribution (z∼N(0,1)z \sim 

N(0,1)z∼N(0,1)), which serves as the input 

to a fully connected (Dense) layer. This 

layer reshapes the noise into an 8x8x1024 

feature map, providing a low-resolution 

starting point for up sampling. The choice of 

128 dimensions balances model capacity 

with computational efficiency, suitable for 

Google Colab’s T4 GPU constraints. 

The initial feature map is then processed 

through a series of six convolution transpose 

layers (Conv2DTranspose), which 

progressively up sample the spatial 

dimensions to the target output size of 

256x256x3. The layer configuration is as 

follows: 
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 Layer 1: 8x8x1024 → 16x16x512 

(filters: 512, kernel: 4x4, stride: 2, 

padding: 'same') 

 Layer 2: 16x16x512 → 32x32x256 

(filters: 256, kernel: 4x4, stride: 2, 

padding: 'same') 

 Layer 3: 32x32x256 → 64x64x128 

(filters: 128, kernel: 4x4, stride: 2, 

padding: 'same') 

 Layer 4: 64x64x128 → 128x128x64 

(filters: 64, kernel: 4x4, stride: 2, 

padding: 'same') 

 Layer 5: 128x128x64 → 256x256x32 

(filters: 32, kernel: 4x4, stride: 2, 

padding: 'same') 

 Layer 6: 256x256x32 → 256x256x3 

(filters: 3, kernel: 4x4, stride: 1, padding: 

'same') 

Each Conv2DTranspose layer, except the 

final one, is followed by Batch 

Normalization (BatchNorm) to stabilize 

training by normalizing activations, and a 

LeakyReLU activation function with a slope 

of α=0.2\alpha = 0.2α=0.2 to introduce non- 

linearity while mitigating the vanishing 

gradient problem. The final layer uses a 

hyperbolic tangent (tanh) activation to scale 

the output pixel values to the range [-1, 1], 

consistent with the preprocessed OSM tile 

data. The progressive reduction in filter 

depth (1024 to 3) ensures a smooth 

transition from abstract features to detailed 

urban structures like roads and blocks. 

The Generator’s design draws inspiration 

from deep convolution GANs [5], adapted 

for geospatial synthesis. Its depth (six 

layers) balances complexity with Colab’s 

memory limits (approximately 12 GB), 

avoiding out-of-memory errors during 

training. 

 

2. Discriminator: 

The discriminator evaluates whether a given 

256x256x3 image—either real (from OSM 

tiles) or synthetic (from the Generator)— 

resembles  a  plausible  urban  layout.  It 

follows a convolutional neural network 

(CNN) structure, progressively 

downsampling the input to a single scalar 

output. The architecture comprises four 

convolutional layers (Conv2D) with the 

following configuration: 

 Layer 1: 256x256x3 → 128x128x64 

(filters: 64, kernel: 4x4, stride: 2, 

padding: 'same') 

 Layer 2: 128x128x64 → 64x64x128 

(filters: 128, kernel: 4x4, stride: 2, 

padding: 'same') 

 Layer 3: 64x64x128 → 32x32x256 

(filters: 256, kernel: 4x4, stride: 2, 

padding: 'same') 

 Layer 4: 32x32x256 → 16x16x512 

(filters: 512, kernel: 4x4, stride: 2, 

padding: 'same') 

Each Conv2D layer uses a LeakyReLU 

activation (α=0.2\alpha = 0.2α=0.2) to 

maintain gradient flow and a stride of 2 to 

halve the spatial dimensions, effectively 

extracting hierarchical features (e.g., edges, 

shapes) from the input image. To prevent 

overfitting, a Dropout layer with a 

probability of 0.25 is applied after each 

convolutional layer, a regularization 

technique critical for small datasets like ours 

(1000-2000 tiles). The final feature map 

(16x16x512) is flattened and passed through 

a Dense layer with a single unit, producing a 

scalar score without an activation function, 

as required by the Wasserstein loss. 

 

3. WGAN-GP Loss  Function: 

The WGAN-GP framework optimizes the 

Generator and Discriminator using the 

Wasserstein distance with a gradient penalty 

term, improving stability over traditional 

GANs [2]. The Discriminator loss is: 

LD=E[D(x)]−E[D(G(z))]+λE[(∣∣∇x^D(x)∣∣2 

−1)2]L_D = \mathbb{E}[D(x)] - 

\mathbb{E}[D(G(z))] + \lambda 

\mathbb{E}[(||\nabla_{\hat{x}} D(x)||_2 - 

1)^2]LD=E[D(x)]−E[D(G(z))]+λE[(∣∣∇x^ 

D(x)∣∣2−1)2] 
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This formulation ensures the Discriminator 

acts as a critic, guiding the Generator to 

produce realistic layouts. 

 

4. Design, Rotation, and Visualization: 

The Generator’s upsampling mirrors image 

synthesis models [11], while the 

Discriminator’s downsampling aligns with 

CNN-based discriminators [5]. Mixed 

precision (float16) was employed to 

optimize memory usage on Colab’s T4 

GPU, reducing training time by 

approximately 20% compared to float32. 

 

B. Training 

The training process for the Wasserstein 

Generative Adversarial Network with 

Gradient Penalty (WGAN-GP) was designed 

to optimize the Generator and Discriminator 

for synthesizing urban layouts from 

OpenStreetMap (OSM) tiles while adhering 

to the computational constraints of Google 

Colab’s free tier. Below, we detail the 

training configuration, hyperparameter 

choices, runtime considerations, and 

monitoring strategies employed in this 

study. 

 

1. Training Configuration: 

Training used the Adam optimizer (lr=1e-4, 

β1=0.5, β2=0.9), batch_size=32, 

disc_steps=1, and mixed precision (float16) 

on Colab’s T4 GPU. We trained for 50 

epochs on 2000 California tiles, saving 

checkpoints every 20 epochs and logging 

outputs every 5 epochs. The batch size was 

fixed at 32, balancing memory usage on 

Colab’s T4 GPU (approximately 15 GB) 

with gradient update frequency. To further 

optimize resource utilization, we employed 

mixed precision training with float16 

arithmetic, reducing memory consumption 

by roughly 20% and accelerating 

computation by leveraging Tensor Cores on 

the T4 GPU. 

2. Dataset Configuration: 

Training was conducted primarily on the 

California dataset, comprising 2000 OSM 

tiles (256x256x3), due to its larger size and 

diversity compared to Gurugram’s 1000 

tiles. The process ran for 50 epochs, a limit 

imposed by Colab’s free tier runtime cap of 

12 hours, after which sessions are terminated 

unless manually restarted. Checkpoints were 

saved every 20 epochs to preserve 

intermediate model states, allowing 

resumption if interrupted, while generated 

outputs were logged every 5 epochs for 

qualitative assessment. 

 

3. Training Workflow: 

The training alternated between updating the 

Discriminator and Generator, following the 

WGAN-GP algorithm. For each iteration: 

 The Discriminator was trained on a batch 

of real tiles (xxx) from the California 

dataset and a batch of fake tiles 

(G(z)G(z)G(z)) generated from random 

noise (zzz). 

 The Generator was updated once per 

iteration to minimize its loss based on the 

Discriminator’s critique. 

 Google Colab’s free tier imposed 

significant challenges. The T4 GPU, 

while capable of handling float16 

computations efficiently, limited training 

to approximately 6-8 hours of continuous 

runtime before potential interruptions. 

Table II. Lists key hyper parameters 

Parameter Value 

Learning Rate 1e-4 

Batch Size 32 

Disc Steps 1 

GP Weight 1.0 

Epochs 50 

 

Fig.4. Lists Keys of important 

Hyperparameters of GAN Model for training 

 

A. Evaluation 
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We qualitatively assessed outputs via visual 

inspection (roads, blocks visibility) and 

propose Freshet Inception Distance (FID)[8] 

and Structural Similarity Index(SSIM)for 

future quantitative evaluation. 

 

I. Results 

 

 

Fig.7. Generated urban layouts for California 

at Epoch 50, indicating slight diversity but 

persistent noise. 

 

A. Training Logs 

Table III. Training logs 
Epoch Gen Loss Disc Loss 

5 -297.2500 -23.5156 

10 -815.5000 -30.3125 

15 -229.0000 7.3516 

20 -177.0000 53.3125 

25 -124.2500 -14.5938 

30 -33.9375 -3.9922 

35 -50.3125 -16.8906 

40 24.2812 -52.0000 

45 -168.7500 -5.4258 

50 -147.3750 40.8750 

Fig.5.ContainingTraining Losses of Our 

model 

B. Generated Layouts 

C. 

Fig. 6. Generated urban layouts for 

Gurugram at Epoch 50, showing noisy, 

pixelated patterns. 
 

Fig.8.New images generated post-training 

for California, reflecting model instability. 

 

C. Qualitative Analysis 

Gurugram outputs lack structure, while 

California shows marginal diversity, 

reflecting dataset differences. Because of 

this structure difference between the 

California and Gurugram city layout, it 

ultimately leads to the enhancement of the 

quality of the dataset and leads to the best 

possible output from our WGAN model. 

So, in conclusion of choosing the right 

dataset, we will suggest California over 

Gurugram because of more structured 

detailing of river, forest, residency, etc. 

 

Discussion 

The results presented in Section IV 

highlight both the potential and the 

challenges of employing Wasserstein GAN 

with Gradient Penalty (WGAN-GP) for 

generating synthetic urban layouts from 

Open Street Map (OSM) datasets. This 

section interprets these findings, explores 

their implications for urban planning and 

generative AI, identifies key limitations, and 

outlines directions for improvement. 

 

A. Interpretation of Results 

The generated urban layouts for Gurugram 

and California, as shown in Figs.  3-5, 
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exhibit persistent noise and pixelation, with 

only faint traces of urban features such as 

roads or blocks. This suggests that the 

WGAN-GP model, while theoretically 

stable due to its Wasserstein distance and 

gradient penalty [2], struggles to converge 

effectively under the constraints imposed by 

the dataset size (1000-2000 tiles) and 

training duration (50 epochs). The 

fluctuating training losses (e.g., Generator 

Loss jumping from -32.2500 at Epoch 5 to 

146.1250 at Epoch 25, as shown in Table II) 

indicate an imbalance between the 

Generator and Discriminator, potentially 

due to insufficient discriminator steps 

(disc_steps=1) or an inadequately tuned 

gradient penalty weight (gp_weight=1.0). 

For Gurugram, the lack of clear structure 

may reflect the chaotic, densely packed 

urban patterns in the input tiles, which pose 

a higher complexity for the Generator to 

replicate. In contrast, California’s outputs 

show slight improvements in diversity, with 

hints of grid-like patterns emerging by 

Epoch 50 (Fig. 4). This could be attributed 

to the larger dataset (2000 tiles) and the 

more uniform suburban layouts in the 

California OSM data. However, the 

persistent abstractness across both datasets 

points to underfitting or mode collapse, 

common pitfalls in GAN training 

exacerbated by limited computational 

resources. 

 

B. Implications for Urban Planning and 

AI Research 

Despite the noisy outputs, this study 

demonstrates the feasibility of using 

WGAN-GP for urban layout generation 

within a low-cost, accessible platform like 

Google Colab. If refined, such models could 

generate synthetic city maps for urban 

planning applications, such as traffic 

simulation, disaster preparedness, or 

privacy-preserving urban analysis. For 

instance, synthetic layouts could replace 

sensitive real-world data in Gurugram, 

where rapid urbanization outpaces OSM 

updates, or in California, where detailed 

maps might raise privacy concerns. 

From an AI research perspective, this work 

underscores the viability of Colab’s free tier 

(T4 GPU, 12-hour runtime) for prototyping 

generative models, a significant advantage 

for academic researchers with limited access 

to high-performance computing. The 

training logs and visualized outputs provide 

a baseline for understanding WGAN-GP’s 

behavior on geospatial data, contributing to 

the growing body of work on GANs in 

urban modeling [3], [4]. 

 

C. Limitations 

Several limitations constrain the current 

results. First, the dataset size (1000 tiles for 

Gurugram, 2000 for California) is modest 

compared to typical GAN training datasets 

(e.g., 10,000+ images for faces [5]). This 

restricts the model’s ability to learn diverse 

urban patterns, leading to repetitive, noisy 

outputs. Second, the 50-epoch training 

duration, capped by Colab’s 12-hour 

runtime, is insufficient for convergence, as 

evidenced by the unstable losses in Table II. 

Third, hyperparameter settings (e.g., 

disc_steps=1, gp_weight=1.0) were not 

exhaustively tuned due to time constraints, 

likely contributing to the Generator- 

Discriminator imbalance. 

Additionally, preprocessing challenges— 

such as the fixed 256x256 tile resolution— 

may obscure finer urban details (e.g., 

narrow roads in Gurugram), while Colab’s 

memory limits (12-15 GB RAM) restrict 

batch sizes and model complexity. These 

factors collectively hinder the generation of 

high-fidelity layouts comparable to real 

OSM tiles. 

 

D. Comparing With Existing Works 
Unlike CityGAN [3], which generates 

stylized cityscapes from large datasets, or 
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UrbanGAN [4], which focuses on 3D urban 

structures, our approach targets 2D OSM- 

based layouts under resource constraints. 

While these prior models achieve clearer 

outputs, they rely on extensive 

computational resources (e.g., multi-GPU 

setups) unavailable in our Colab-based 

workflow. Our study thus fills a niche by 

exploring low-cost generative AI for urban 

applications, though it sacrifices output 

quality compared to resource-intensive 

alternatives. 

 

A. Future Directions 

The limitations identified in this study— 

small dataset size, insufficient training 

duration, hyperparameter instability, and 

noisy outputs—provide a roadmap for 

enhancing the WGAN-GP model’s ability to 

generate realistic urban layouts. Below, we 

propose a series of improvements, ranging 

from data and training scale-ups to 

architectural innovations and evaluation 

metrics, aimed at overcoming these 

challenges and increasing the practical 

utility of synthetic urban layouts for real- 

world applications. 

 

1. Dataset Expansion: 
To improve the diversity and clarity of 

generated urban features, we plan to 

increasethedatasetsizeto5000+tilesperregion 

,up from the current 1000 tiles for 

Gurugram and 2000 tiles for California. 

Thisexpansion would capture broader 

spectrum of urban patterns—e.g., 

Gurugram’ schaotcresidential-commercial 

mix and California’s suburban grids 

interspersed with highways—allowing the 

Generator to learn more representative 

features. Additional data could be sourced 

from OSM using automated scripts with 

OSMnx, targeting varied urban densities 

(e.g.,rural outskirts, industrial zones) to 

enhance model robustness. Preprocessing 

would  include  advanced  augmentations, 

such as rotation and color jittering, to 

further enrich the training set. 

 

 

2. Extended Training Duration: Training 

was capped at 50 epochs due to Google 

Colab’s12-hour run time limit, insufficient 

for convergence as evidenced by fluctuating 

losses (Table III). We propose extending 

training to 100+ epochs to allow deeper 

optimization of the Generator and 

Discriminator. This could be achieved using 

Colab Pro, which offers a 24-hour runtime 

and access to higher-spec GPUs (e.g., 

P100), or by migrating to local GPUs with 

greater computational capacity(e.g., 

NVIDIA RTX 3090 with 24 GB VRAM). 

Longer training should reduce noise and 

improve feature of herence, a hypothesis 

supported by prior GAN studies showing 

quality gains beyond 100 epochs [5]. 
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