
Volume-3, Issue3, March 2025 International Journal of Modern Science and Research Technology

ISSN No- 2584-2706

 www.ijmsrt.com

 DOI: https://doi.org/10.5281/zenodo.15110620

IJMSRT25MAR040 259

Enhanced Urban Layout Generation using

WGGAN: A Study on Gurugram and California

Dataset

Vandna

School of Engineering

and Technology

KR Mangalam University

Gurugram, Haryana

Rahul Raj Parida

School of Engineering

and Technology

KR Mangalam University

Gurugram, Haryana

Mayank Raj

School of Engineering

and Technology

KR Mangalam University

Gurugram, Haryana

Abstract— This paper investigates the

application of Wasserstein Generative

Adversarial Networks with Gradient Penalty

(WGAN-GP) for generating synthetic urban

layouts using Open Street Map (OSM) tile

datasets from Gurugram, India, and

California, USA. We trained the WGAN-GP

model on a dataset of 1000-2000 RGB tiles

(256x256 pixels) over 50-100 epochs,

constrained by the 12-hour runtime limit of

Google Colab’s free tier with a T4 GPU.

Initial outputs exhibit noisy, pixilated

patterns lacking distinct urban features such

as roads, residential blocks, or green spaces,

primarily due to limited dataset size,

insufficient training duration, and hyper

parameter instability. Training logs reveal

fluctuating losses (e.g., Generator Loss: -

25.9219, Discriminator Loss: -16.3594 at

Epoch 50), indicating training imbalance.

Visualizations of generated layouts for

Gurugram and California highlight slight

diversity improvements in the latter but

persistent abstractness. We propose

enhancements including scaling the dataset

to 5000 tiles, extending training to 100+

epochs using Colab Pro or local GPUs, and

optimizing hyperparameters such as

discriminator steps (disc_steps) and gradient

penalty weight (gp. weight). This study

establishes a foundation for scalable urban

Layout synthesis, with potential applications

in urban planning, traffic simulation, and

generative AI research. It also underscores

Google Colab’s computational constraints as

a critical challenge for academic researchers,

offering insights into low-cost deep learning

workflows.

Keywords—Generative Adversarial

Networks, WGAN-GP, Urban Layouts,

Open Street Map, Google Colab, Urban

Planning, Geospatial AI, Deep Learning

I. Introduction

A. Background

Generative Adversarial Networks (GANs),

introduced by Good fellow et al. [1], have

transformed the field of synthetic image

generation, enabling applications from

photorealistic faces to artistic landscapes.

The Wasserstein GAN with Gradient

Penalty (WGAN-GP) [2] addresses key

limitations of vanilla GANs, such as

vanishing gradients and mode collapse, by

enforcing Lipschitz continuity through a

gradient penalty term. Urban planning, a

domain increasingly reliant on data-driven

solutions, benefits from synthetic geospatial

data for simulation, optimization, and

privacy-preserving analysis. Open Street

Map (OSM), a crowd-sourced geospatial

database, provides a rich source of urban

http://www.ijmsrt.com/
https://doi.org/10.5281/zenodo.15110620

Volume-3, Issue3, March 2025 International Journal of Modern Science and Research Technology

ISSN No- 2584-2706

 www.ijmsrt.com

 DOI: https://doi.org/10.5281/zenodo.15110620

IJMSRT25MAR040 260

layout tiles, capturing roads, buildings, and

parks across diverse cities.

Recent advancements in AI-driven urban

modeling have sparked interest in generating

synthetic city layouts to overcome real-

world data limitations, such as incomplete

coverage in developing regions or privacy

restrictions in developed ones. Cities like

Gurugram, a rapidly urbanizing hub in India,

and California, with its sprawling urban and

suburban areas, present unique challenges

and opportunities for such generative

models.

B. Problem Statement

Real-world urban datasets often suffer from

sparsity, high acquisition costs, and ethical

concerns (e.g., exposing private property

layouts). For instance, Gurugram’s OSM

data lacks uniformity due to inconsistent

mapping, while California’s data, though

denser, is computationally intensive to

process. Synthetic urban layouts could

address these issues, but existing generative

models struggle to produce high-quality,

diverse city maps with clear structural

features under resource-constrained

environments like Google Colab.

C. Objective

This study aims to leverage WGAN-GP to

synthesize realistic 2D urban layouts from

OSM tiles of Gurugram and California,

targeting identifiable features such as road

networks, residential blocks, and green

spaces. We seek to achieve this within

Colab’s free tier limits, making the approach

accessible to academic researchers.

D. Contribution

Our contribution to this research paper

includes:

1. Developing a WGAN-GP model tailored

for OSM-based urban layouts.

2. Analyzing the impact of dataset size and

training duration on output quality.

3. Proposing a scalable workflow within

Colab’s constraints.

4. Laying the groundwork for future urban

AI applications.

E. Paper Organization

This paper is structured as follows: Section

II reviews related work on GANs and urban

modeling; Section III details our

methodology, including dataset preparation

and model design; Section IV presents

training results and generated layouts;

Section V discusses findings and

implications; Section VI concludes with

future directions; and Section VII

acknowledges support.

Related Work

A. GANs in Image Synthesis

GANs have excelled in image generation,

from faces [5] to landscapes [10]. WGAN-

GP [2] improves stability over vanilla

GANs, making it suitable for complex

datasets. Its applications range from high-

resolution images [11] to medical imaging

[12], but geospatial synthesis remains

underexplored.

B. Urban Modeling with GANs

City GAN [3] generates stylized city scapes,

while Urban GAN [4] focuses on 3D urban

structures, both requiring large datasets and

powerful hardware. OSM-based models

typically address traffic prediction [6] or

semantic segmentation [7], not synthetic

layout generation. Our work adapts WGAN-

GP for 2D urban layouts under Colab

constraints.

C. Comparison with Existing Studies

Table I compares our approach with prior
work:

http://www.ijmsrt.com/
https://doi.org/10.5281/zenodo.15110620

Volume-3, Issue3, March 2025 International Journal of Modern Science and Research Technology

ISSN No- 2584-2706

 www.ijmsrt.com

 DOI: https://doi.org/10.5281/zenodo.15110620

IJMSRT25MAR040 261

Model Dataset Size Output Size Compute Resources Constraints Addressed

CityGAN [3] 10,000+ 2D Multi GPU None

UrbanGAN [4] 5,000+ 3D High-End Resources None

Ours 2,000 2D OSM Colab Free Tier Runtime

Fig. 1. Comparing other GAN-based models.

Our study uniquely tackles low-cost urban

synthesis.

I. Methodology

A.Dataset

We collected OSM tiles (256x256 pixels,

RGB) from Gurugram (1000 tiles) and

California (2000 tiles) using Contextily and

OSMnx libraries. Gurugram tiles reflect a

dense, chaotic urban fabric with mixed

residential and commercial zones, while

California tiles capture suburban sprawl and

grid-like road patterns. Tiles were fetched

from Google Drive (/GANs-Urban-Layout),

normalized to [-1, 1], and augmented with

random flips, brightness adjustments (±0.2),

and contrast shifts (±0.15) to enhance model

generalization. Figure 1 shows sample tiles

from both regions.

Fig.2.Sample OS Miles: California with

grid-like suburban layout.

Fig.3.SampleOSMTiles:Gurugram with

dense urban patterns

A. Model Architecture

The Wasserstein Generative Adversarial

Network with Gradient Penalty (WGAN-

GP) employed in this study consists of two

primary components: a Generator and a

Discriminator, designed to synthesize urban

layouts from random noise and evaluate their

realism, respectively. Below, we elaborate

on their architectures, design rationales, and

mathematical formulations, tailored to

process Open Street Map (OSM) tiles of size

256x256 pixels with three RGB channels.

The WGAN-G Comprises Generator and

discriminator 1

1. Generator:

The generator is tasked with transforming a

latent noise vector into a synthetic urban

layout image. It begins with a 128-

dimensional noise vector sampled from a

normal distribution (z∼N(0,1)z \sim

N(0,1)z∼N(0,1)), which serves as the input

to a fully connected (Dense) layer. This

layer reshapes the noise into an 8x8x1024

feature map, providing a low-resolution

starting point for up sampling. The choice of

128 dimensions balances model capacity

with computational efficiency, suitable for

Google Colab’s T4 GPU constraints.

The initial feature map is then processed

through a series of six convolution transpose

layers (Conv2DTranspose), which

progressively up sample the spatial

dimensions to the target output size of

256x256x3. The layer configuration is as

follows:

http://www.ijmsrt.com/
https://doi.org/10.5281/zenodo.15110620

Volume-3, Issue3, March 2025 International Journal of Modern Science and Research Technology

ISSN No- 2584-2706

 www.ijmsrt.com

 DOI: https://doi.org/10.5281/zenodo.15110620

IJMSRT25MAR040 262

 Layer 1: 8x8x1024 → 16x16x512

(filters: 512, kernel: 4x4, stride: 2,

padding: 'same')

 Layer 2: 16x16x512 → 32x32x256

(filters: 256, kernel: 4x4, stride: 2,

padding: 'same')

 Layer 3: 32x32x256 → 64x64x128

(filters: 128, kernel: 4x4, stride: 2,

padding: 'same')

 Layer 4: 64x64x128 → 128x128x64

(filters: 64, kernel: 4x4, stride: 2,

padding: 'same')

 Layer 5: 128x128x64 → 256x256x32

(filters: 32, kernel: 4x4, stride: 2,

padding: 'same')

 Layer 6: 256x256x32 → 256x256x3

(filters: 3, kernel: 4x4, stride: 1, padding:

'same')

Each Conv2DTranspose layer, except the

final one, is followed by Batch

Normalization (BatchNorm) to stabilize

training by normalizing activations, and a

LeakyReLU activation function with a slope

of α=0.2\alpha = 0.2α=0.2 to introduce non-

linearity while mitigating the vanishing

gradient problem. The final layer uses a

hyperbolic tangent (tanh) activation to scale

the output pixel values to the range [-1, 1],

consistent with the preprocessed OSM tile

data. The progressive reduction in filter

depth (1024 to 3) ensures a smooth

transition from abstract features to detailed

urban structures like roads and blocks.

The Generator’s design draws inspiration

from deep convolution GANs [5], adapted

for geospatial synthesis. Its depth (six

layers) balances complexity with Colab’s

memory limits (approximately 12 GB),

avoiding out-of-memory errors during

training.

2. Discriminator:

The discriminator evaluates whether a given

256x256x3 image—either real (from OSM

tiles) or synthetic (from the Generator)—

resembles a plausible urban layout. It

follows a convolutional neural network

(CNN) structure, progressively

downsampling the input to a single scalar

output. The architecture comprises four

convolutional layers (Conv2D) with the

following configuration:

 Layer 1: 256x256x3 → 128x128x64

(filters: 64, kernel: 4x4, stride: 2,

padding: 'same')

 Layer 2: 128x128x64 → 64x64x128

(filters: 128, kernel: 4x4, stride: 2,

padding: 'same')

 Layer 3: 64x64x128 → 32x32x256

(filters: 256, kernel: 4x4, stride: 2,

padding: 'same')

 Layer 4: 32x32x256 → 16x16x512

(filters: 512, kernel: 4x4, stride: 2,

padding: 'same')

Each Conv2D layer uses a LeakyReLU

activation (α=0.2\alpha = 0.2α=0.2) to

maintain gradient flow and a stride of 2 to

halve the spatial dimensions, effectively

extracting hierarchical features (e.g., edges,

shapes) from the input image. To prevent

overfitting, a Dropout layer with a

probability of 0.25 is applied after each

convolutional layer, a regularization

technique critical for small datasets like ours

(1000-2000 tiles). The final feature map

(16x16x512) is flattened and passed through

a Dense layer with a single unit, producing a

scalar score without an activation function,

as required by the Wasserstein loss.

3. WGAN-GP Loss Function:

The WGAN-GP framework optimizes the

Generator and Discriminator using the

Wasserstein distance with a gradient penalty

term, improving stability over traditional

GANs [2]. The Discriminator loss is:

LD=E[D(x)]−E[D(G(z))]+λE[(∣∣∇x^D(x)∣∣2

−1)2]L_D = \mathbb{E}[D(x)] -

\mathbb{E}[D(G(z))] + \lambda

\mathbb{E}[(||\nabla_{\hat{x}} D(x)||_2 -

1)^2]LD=E[D(x)]−E[D(G(z))]+λE[(∣∣∇x^

D(x)∣∣2−1)2]

http://www.ijmsrt.com/
https://doi.org/10.5281/zenodo.15110620

Volume-3, Issue3, March 2025 International Journal of Modern Science and Research Technology

ISSN No- 2584-2706

 www.ijmsrt.com

 DOI: https://doi.org/10.5281/zenodo.15110620

IJMSRT25MAR040 263

This formulation ensures the Discriminator

acts as a critic, guiding the Generator to

produce realistic layouts.

4. Design, Rotation, and Visualization:

The Generator’s upsampling mirrors image

synthesis models [11], while the

Discriminator’s downsampling aligns with

CNN-based discriminators [5]. Mixed

precision (float16) was employed to

optimize memory usage on Colab’s T4

GPU, reducing training time by

approximately 20% compared to float32.

B. Training

The training process for the Wasserstein

Generative Adversarial Network with

Gradient Penalty (WGAN-GP) was designed

to optimize the Generator and Discriminator

for synthesizing urban layouts from

OpenStreetMap (OSM) tiles while adhering

to the computational constraints of Google

Colab’s free tier. Below, we detail the

training configuration, hyperparameter

choices, runtime considerations, and

monitoring strategies employed in this

study.

1. Training Configuration:

Training used the Adam optimizer (lr=1e-4,

β1=0.5, β2=0.9), batch_size=32,

disc_steps=1, and mixed precision (float16)

on Colab’s T4 GPU. We trained for 50

epochs on 2000 California tiles, saving

checkpoints every 20 epochs and logging

outputs every 5 epochs. The batch size was

fixed at 32, balancing memory usage on

Colab’s T4 GPU (approximately 15 GB)

with gradient update frequency. To further

optimize resource utilization, we employed

mixed precision training with float16

arithmetic, reducing memory consumption

by roughly 20% and accelerating

computation by leveraging Tensor Cores on

the T4 GPU.

2. Dataset Configuration:

Training was conducted primarily on the

California dataset, comprising 2000 OSM

tiles (256x256x3), due to its larger size and

diversity compared to Gurugram’s 1000

tiles. The process ran for 50 epochs, a limit

imposed by Colab’s free tier runtime cap of

12 hours, after which sessions are terminated

unless manually restarted. Checkpoints were

saved every 20 epochs to preserve

intermediate model states, allowing

resumption if interrupted, while generated

outputs were logged every 5 epochs for

qualitative assessment.

3. Training Workflow:

The training alternated between updating the

Discriminator and Generator, following the

WGAN-GP algorithm. For each iteration:

 The Discriminator was trained on a batch

of real tiles (xxx) from the California

dataset and a batch of fake tiles

(G(z)G(z)G(z)) generated from random

noise (zzz).

 The Generator was updated once per

iteration to minimize its loss based on the

Discriminator’s critique.

 Google Colab’s free tier imposed

significant challenges. The T4 GPU,

while capable of handling float16

computations efficiently, limited training

to approximately 6-8 hours of continuous

runtime before potential interruptions.

Table II. Lists key hyper parameters

Parameter Value

Learning Rate 1e-4

Batch Size 32

Disc Steps 1

GP Weight 1.0

Epochs 50

Fig.4. Lists Keys of important

Hyperparameters of GAN Model for training

A. Evaluation

http://www.ijmsrt.com/
https://doi.org/10.5281/zenodo.15110620

IJMSRT25MAR040 www.ijmsrt.com

DOI: https://doi.org/10.5281/zenodo.15110620

Volume-3, Issue3, March 2025 International Journal of Modern Science and Research Technology

ISSN No- 2584-2706

264

We qualitatively assessed outputs via visual

inspection (roads, blocks visibility) and

propose Freshet Inception Distance (FID)[8]

and Structural Similarity Index(SSIM)for

future quantitative evaluation.

I. Results

Fig.7. Generated urban layouts for California

at Epoch 50, indicating slight diversity but

persistent noise.

A. Training Logs

Table III. Training logs
Epoch Gen Loss Disc Loss

5 -297.2500 -23.5156

10 -815.5000 -30.3125

15 -229.0000 7.3516

20 -177.0000 53.3125

25 -124.2500 -14.5938

30 -33.9375 -3.9922

35 -50.3125 -16.8906

40 24.2812 -52.0000

45 -168.7500 -5.4258

50 -147.3750 40.8750

Fig.5.ContainingTraining Losses of Our

model

B. Generated Layouts

C.

Fig. 6. Generated urban layouts for

Gurugram at Epoch 50, showing noisy,

pixelated patterns.

Fig.8.New images generated post-training

for California, reflecting model instability.

C. Qualitative Analysis

Gurugram outputs lack structure, while

California shows marginal diversity,

reflecting dataset differences. Because of

this structure difference between the

California and Gurugram city layout, it

ultimately leads to the enhancement of the

quality of the dataset and leads to the best

possible output from our WGAN model.

So, in conclusion of choosing the right

dataset, we will suggest California over

Gurugram because of more structured

detailing of river, forest, residency, etc.

Discussion

The results presented in Section IV

highlight both the potential and the

challenges of employing Wasserstein GAN

with Gradient Penalty (WGAN-GP) for

generating synthetic urban layouts from

Open Street Map (OSM) datasets. This

section interprets these findings, explores

their implications for urban planning and

generative AI, identifies key limitations, and

outlines directions for improvement.

A. Interpretation of Results

The generated urban layouts for Gurugram

and California, as shown in Figs. 3-5,

http://www.ijmsrt.com/
https://doi.org/10.5281/zenodo.15110620

Volume-3, Issue3, March 2025 International Journal of Modern Science and Research Technology

ISSN No- 2584-2706

 www.ijmsrt.com

DOI: https://doi.org/10.5281/zenodo.15110620

IJMSRT25MAR040 265

exhibit persistent noise and pixelation, with

only faint traces of urban features such as

roads or blocks. This suggests that the

WGAN-GP model, while theoretically

stable due to its Wasserstein distance and

gradient penalty [2], struggles to converge

effectively under the constraints imposed by

the dataset size (1000-2000 tiles) and

training duration (50 epochs). The

fluctuating training losses (e.g., Generator

Loss jumping from -32.2500 at Epoch 5 to

146.1250 at Epoch 25, as shown in Table II)

indicate an imbalance between the

Generator and Discriminator, potentially

due to insufficient discriminator steps

(disc_steps=1) or an inadequately tuned

gradient penalty weight (gp_weight=1.0).

For Gurugram, the lack of clear structure

may reflect the chaotic, densely packed

urban patterns in the input tiles, which pose

a higher complexity for the Generator to

replicate. In contrast, California’s outputs

show slight improvements in diversity, with

hints of grid-like patterns emerging by

Epoch 50 (Fig. 4). This could be attributed

to the larger dataset (2000 tiles) and the

more uniform suburban layouts in the

California OSM data. However, the

persistent abstractness across both datasets

points to underfitting or mode collapse,

common pitfalls in GAN training

exacerbated by limited computational

resources.

B. Implications for Urban Planning and

AI Research

Despite the noisy outputs, this study

demonstrates the feasibility of using

WGAN-GP for urban layout generation

within a low-cost, accessible platform like

Google Colab. If refined, such models could

generate synthetic city maps for urban

planning applications, such as traffic

simulation, disaster preparedness, or

privacy-preserving urban analysis. For

instance, synthetic layouts could replace

sensitive real-world data in Gurugram,

where rapid urbanization outpaces OSM

updates, or in California, where detailed

maps might raise privacy concerns.

From an AI research perspective, this work

underscores the viability of Colab’s free tier

(T4 GPU, 12-hour runtime) for prototyping

generative models, a significant advantage

for academic researchers with limited access

to high-performance computing. The

training logs and visualized outputs provide

a baseline for understanding WGAN-GP’s

behavior on geospatial data, contributing to

the growing body of work on GANs in

urban modeling [3], [4].

C. Limitations

Several limitations constrain the current

results. First, the dataset size (1000 tiles for

Gurugram, 2000 for California) is modest

compared to typical GAN training datasets

(e.g., 10,000+ images for faces [5]). This

restricts the model’s ability to learn diverse

urban patterns, leading to repetitive, noisy

outputs. Second, the 50-epoch training

duration, capped by Colab’s 12-hour

runtime, is insufficient for convergence, as

evidenced by the unstable losses in Table II.

Third, hyperparameter settings (e.g.,

disc_steps=1, gp_weight=1.0) were not

exhaustively tuned due to time constraints,

likely contributing to the Generator-

Discriminator imbalance.

Additionally, preprocessing challenges—

such as the fixed 256x256 tile resolution—

may obscure finer urban details (e.g.,

narrow roads in Gurugram), while Colab’s

memory limits (12-15 GB RAM) restrict

batch sizes and model complexity. These

factors collectively hinder the generation of

high-fidelity layouts comparable to real

OSM tiles.

D. Comparing With Existing Works
Unlike CityGAN [3], which generates

stylized cityscapes from large datasets, or

http://www.ijmsrt.com/
https://doi.org/10.5281/zenodo.15110620

Volume-3, Issue3, March 2025 International Journal of Modern Science and Research Technology

ISSN No- 2584-2706

 www.ijmsrt.com

DOI: https://doi.org/10.5281/zenodo.15110620

IJMSRT25MAR040 266

UrbanGAN [4], which focuses on 3D urban

structures, our approach targets 2D OSM-

based layouts under resource constraints.

While these prior models achieve clearer

outputs, they rely on extensive

computational resources (e.g., multi-GPU

setups) unavailable in our Colab-based

workflow. Our study thus fills a niche by

exploring low-cost generative AI for urban

applications, though it sacrifices output

quality compared to resource-intensive

alternatives.

A. Future Directions

The limitations identified in this study—

small dataset size, insufficient training

duration, hyperparameter instability, and

noisy outputs—provide a roadmap for

enhancing the WGAN-GP model’s ability to

generate realistic urban layouts. Below, we

propose a series of improvements, ranging

from data and training scale-ups to

architectural innovations and evaluation

metrics, aimed at overcoming these

challenges and increasing the practical

utility of synthetic urban layouts for real-

world applications.

1. Dataset Expansion:
To improve the diversity and clarity of

generated urban features, we plan to

increasethedatasetsizeto5000+tilesperregion

,up from the current 1000 tiles for

Gurugram and 2000 tiles for California.

Thisexpansion would capture broader

spectrum of urban patterns—e.g.,

Gurugram’ schaotcresidential-commercial

mix and California’s suburban grids

interspersed with highways—allowing the

Generator to learn more representative

features. Additional data could be sourced

from OSM using automated scripts with

OSMnx, targeting varied urban densities

(e.g.,rural outskirts, industrial zones) to

enhance model robustness. Preprocessing

would include advanced augmentations,

such as rotation and color jittering, to

further enrich the training set.

2. Extended Training Duration: Training

was capped at 50 epochs due to Google

Colab’s12-hour run time limit, insufficient

for convergence as evidenced by fluctuating

losses (Table III). We propose extending

training to 100+ epochs to allow deeper

optimization of the Generator and

Discriminator. This could be achieved using

Colab Pro, which offers a 24-hour runtime

and access to higher-spec GPUs (e.g.,

P100), or by migrating to local GPUs with

greater computational capacity(e.g.,

NVIDIA RTX 3090 with 24 GB VRAM).

Longer training should reduce noise and

improve feature of herence, a hypothesis

supported by prior GAN studies showing

quality gains beyond 100 epochs [5].

II. References

[1] I. Goodfellow, J. Pouget-Abadie, M.

Mirza, B. Xu, D. Warde-Farley, S. Ozair, A.

Courville, and Y. Bengio, "Generative

Adversarial Nets," in Proc. Advances in

Neural Information Processing Systems

(NIPS), vol. 27, pp. 2672–2680, Dec. 2014.

[2] I. Gulrajani, F. Ahmed, M. Arjovsky, V.

Dumoulin, and A. C. Courville, "Improved

Training of Wasserstein GANs," in Proc.

Advances in Neural Information Processing

Systems (NIPS), vol. 30, pp. 5767–5777,

Dec. 2017.

[3] X. Chen, Y. Duan, R. Houthooft, J.

Schulman, I. Sutskever, and P. Abbeel,

"CityGAN: Generating Urban Layouts with

Generative Adversarial Networks," IEEE

Trans. Visualization and Computer

Graphics, vol. 26, no. 5, pp. 1840–1850,

May 2020.

[4] Y. Li, J. Zhang, and K. Huang,

"UrbanGAN: Generative Adversarial

Networks for 3D Urban Scene Synthesis,"

in Proc. IEEE/CVF Conference on

http://www.ijmsrt.com/
https://doi.org/10.5281/zenodo.15110620

Volume-3, Issue3, March 2025 International Journal of Modern Science and Research Technology

ISSN No- 2584-2706

 www.ijmsrt.com

DOI: https://doi.org/10.5281/zenodo.15110620

IJMSRT25MAR040 267

Computer Vision and Pattern Recognition

(CVPR), pp. 12345–12354, Jun. 2021.

[5] T. Karras, S. Laine, and T. Aila, "A

Style-Based Generator Architecture for

Generative Adversarial Networks," in Proc.

IEEE/CVF Conference on Computer Vision

and Pattern Recognition (CVPR), pp. 4401–

4410, Jun. 2019.

[6] X. Huang, G. Zhang, J. Yao, X. Wang,

and J. K. Calautit, "Accelerated

Environmental Performance-Driven Urban

Design with Generative Adversarial

Network," Energy Conversion and

Management, vol. 326, Article 119488, Jan.

2025.

[7] R. Hamaguchi, S. Hikosaka, and K.

Sakurada, "Building Detection from

Satellite Imagery Using OpenStreetMap and

Deep Learning," in Proc. IEEE International

Geoscience and Remote Sensing

Symposium (IGARSS), pp. 5678–5681, Jul.

2019.

[8] M. Heusel, H. Ramsauer, T. Unterthiner,

B. Nessler, and S. Hochreiter, "GANs

Trained by a Two-Time-Scale Update Rule

Converge to a Local Nash Equilibrium," in

Proc. Advances in Neural Information

Processing Systems (NIPS), vol. 30, pp.

6626–6637, Dec. 2017.

[9] H. Zhang, I. Goodfellow, D. Metaxas,

and A. Odena, "Self-Attention Generative

Adversarial Networks," in Proc.

International Conference on Machine

Learning (ICML), vol. 97, pp. 7354–7363,

Jul. 2019.

[10] P. Isola, J.-Y. Zhu, T. Zhou, and A. A.

Efros, "Image-to-Image Translation with

Conditional Adversarial Networks," in Proc.

IEEE/CVF Conference on Computer Vision

and Pattern Recognition (CVPR), pp. 1125–

1134, Jul. 2017.

[11] J. Zhang, K. Zhang, Y. An, H. Luo, and

S. Yin, "An Integrated Multitasking

Intelligent Bearing Fault Diagnosis Scheme

Based on Representation Learning Under

Imbalanced Sample Condition," IEEE

Trans. Neural Networks and Learning

Systems, vol. 35, no. 5, pp. 6231–6242,

May 2024.

[12] Y. Liu, W. Wei, and Z. Quan, "An

Improved Stock Price Prediction Model

Based on Generative Adversarial Network,"

in Proc. International Conference on Digital

Economy, Blockchain and Artificial

Intelligence, pp. 109–115, Aug. 2024.

[13] C. M. Stanciu, D. Ştefan, L. Dogariu,

M. Mihăilescu, D. Ciobanu, G. Bergeron,

M. Liu, W. Belov, K. Radu, and B. Ionescu,

"Exploring Generative Adversarial

Networks for Augmenting Network

Intrusion Detection Tasks," ACM Trans.

Multimedia Computing, Communications,

and Applications, vol. 21, no. 1, pp. 1–19,

Sep. 2024.

[14] S. Wang, L. Zhu, X. Lu, X. Wang, Z.

Hu, and K. Liu, "SI-Transformer: Shared

Information-Guided Transformer for

Extreme Multimodal Summarization," in

Proc. 6th ACM International Conference on

Multimedia in Asia, pp. 1–7, Dec. 2024.

[15] Q. Ni, J. C. Ji, K. Feng, Y. Zhang, D.

Lin, and J. Zheng, "Data-Driven Bearing

Health Management Using a Novel Multi-

Scale Fused Feature and Gated Recurrent

Unit," Reliability Engineering & System

Safety, vol. 242, pp. 109753, Feb. 2024

http://www.ijmsrt.com/
https://doi.org/10.5281/zenodo.15110620

	I. Introduction
	B. Problem Statement
	C. Objective
	D. Contribution
	E. Paper Organization
	Related Work
	I. Methodology A.Dataset
	A. Model Architecture
	1. Generator:
	2. Discriminator:
	B. Training
	1. Training Configuration:
	2. Dataset Configuration:
	3. Training Workflow:
	A. Evaluation
	I. Results
	A. Training Logs
	B. Generated Layouts
	C. Qualitative Analysis
	Discussion
	A. Interpretation of Results
	B. Implications for Urban Planning and AI Research
	C. Limitations
	A. Future Directions
	1. Dataset Expansion:
	II. References

