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One of the easiest ways to get personal 

information from careless people is 

through phishing attacks. Phisher's main 

goal is to get important information such 

as bank account details, username, 

password,  and  more.  Cyber  security 
legitimate and phishing URLs, this study 
examines the use of a machine learning 

approach for phishing URL identification. 

Phishing  websites  are  classified  using 

experts are currently focusing on creating 

reliable and powerful identification 

methods for phishing website detection. 

By  extracting  and  analyzing  several 
methods such as Support Vector Machines 

(SVMs), Random Forests, and Decision 

Tree Algorithms. 

This study focuses on the use of machine 

learning  approaches  for  phishing  URL 

attributes from the actual and phishing 

URLs, this study examines the use of a 

machine learning approach for phishing- 

URL identification. Phishing websites are 

classified specifically into support vector 
detection  by  extracting  and  analyzing 
various attributes from both real and 

phishing URLs. Phishing websites are 

categorized using Support Vector 

Machines (SVMs), Random Forests, and 

Decision Tree Algorithms. In addition to 

successfully  identifying  phishing  URLs, 

machines (SVMs), random forests, and 

algorithms for classifying trees that 

determine decisions. 

By extracting and analyzing several 

attributes from both real and phishing 

URLs, this study examines the use of 
machine learning approaches to identify 

the purpose of this study is to compare the 

accuracy of various models by evaluating 

false  positive  and false  negative  rates, 

machine learning URL identification. 

Phishing websites are categorized into 

Support  Vector  Machines   (SVMs), 
aiming  to  identify  the  most  effective 
algorithms for machine learning. 

Experimental results show that machine 

learning-based techniques significantly 

enhance the detection of phishing websites 

and provide reliable defenses against 

online threats. 
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Algorithms. In addition to the successful 

identification of phishing URLs, the 

purpose of this study is to compare the 

accuracy of comparing false positives and 

false negative rates of several models to 

identify the best effective algorithms for 

machine  learning.  Experimental  results 
show   that   machine   learning-based 

(SVM), Random Forest, Decision Tree, techniques significantly improve 

awareness of phishing and provide reliable 

defense against online dangers. 
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overcome the limitations of heuristic and 

blacklist-based approaches. 

The rest of this paper is structured as 

 
Introduction 

Phishing has become a major problem for 

follows: Section 2 reviews related research 

on phishing detection approaches. Section 

3 discusses the methodology used in 

machine learning and deep learning 

security researchers in recent years, as it is 

very easy for an attacker to develop fake 

approaches. Section 

experimental results and 

4 presents 

analysis, and 

websites that mimic real ones. Even if Section 5 outlines future research 

experts can recognize the fraudulent opportunities. 

website, phishing attempts still affect 

many people, leading to the loss of 

personal and financial information. The 

theft of bank account details is the primary 

goal of the attacker. Phishing attacks are 

estimated to cause U.S. companies to lose 

USD 2 billion annually. According to the 

third Microsoft Computing Safer Index 

report published in February 2014, the 

global annual impact of phishing is up to 

USD 5 billion. 
 

Due to a lack of consumer 

phishing attempts remain 

awareness, 

effective. 

Reducing phishing attacks is challenging 

because they exploit human weaknesses, 

but improving defense methods against 

phishing is still crucial. A leading blacklist 

of known phishing URLs and associated 

Internet Protocol (IP) addresses is the basis 

of traditional phishing detection 

techniques. To bypass these blacklists, 

attackers often employ strategies such as 

domain  fluxing  (where  proxies  are 

Fig. 1 

This photo illustrates how deep learning 

can be applied in various cybersecurity 

applications, including malware detection 

(for  both  PC  and  Android),  phishing 
dynamically built to host phishing 
websites) and URL generation algorithms. 

detection (including SMS, website, and 

email phishing), spam detection (including 
The inability of blacklist-based detection 
to identify phishing attacks in real-time is 

a significant disadvantage. 

 

Heuristic detection techniques can identify 

zero-day phishing attacks by analyzing the 

social, email, and SMS spam), and 

intrusion detection (including anomaly and 

abuse recognition). Deep learning models 

are used to address specific threats in all 

these sectors. 

distinctive features of phishing websites. 

However, these techniques may produce 

false positives more quickly, as phishing 
signs are not always present. As a result, 

Associated Research 

Phishing attacks, which involve social 

engineering and technical manipulation to 

many  security  experts  have  turned  to steal personal information such as login 
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credentials, bank account details, and 

personal data, have become one of the 

most common and dangerous 

cybersecurity threats [1], [2]. To exploit 

individuals and organizations, attackers 

use a variety of tactics, including spear- 

phishing, phishing emails, fake websites, 

and SMS messages. These attacks can 

cause significant financial losses and 

damage to brand reputation. Orunsolu et 

al. [3] argue that phishing detection 

remains a critical research topic, as 

hackers constantly refine their methods to 

evade detection. 

Traditional anti-phishing techniques 

primarily rely on browser security 

technologies, heuristics, and blacklisting. 

Major browsers use blocklists of known 

harmful websites, such as those provided 

by Google Safe Browsing and PhishTank, 

to warn users about suspicious websites 

[4], [5]. However, blacklist-based methods 

face difficulties in identifying new 

phishing domains and zero-day phishing 

attacks [6]. Researchers are increasingly 

turning to deep learning (DL) and machine 

learning (ML) to overcome these 

limitations. 

 
Phishing attempts can be categorized 

based on traditional machine learning 

algorithms such as content analysis, email 

headers, Naive Bayes (NB), Support 

Vector Machines (SVM), Decision Trees 

(DT), and Random Forests (RF) [8], [9]. 

Recent advances in deep learning have 

significantly improved phishing detection 

systems. Models such as Convolutional 

Neural Networks (CNNs), Long Short- 

Term Memory networks (LSTMs), and 

hybrid deep learning frameworks are now 

capable of learning complex patterns from 

updated email content and URLs [9], [13]. 

Al-Dabat [16] compares various 

classification methods for predicting 

phishing websites, while Sahingoz et al. 
[13]  discuss  machine-based  phishing 

detection using URL properties. 

Furthermore, feature selection techniques 

such as information gain, chi-square, and 

correlation-based analysis are often used to 

identify the most relevant attributes and 

improve model performance [18], [19]. To 

further enhance the performance of deep 

learning models, optimization techniques 

like Genetic Algorithms (GA), Particle 

Swarm Optimization (PSO), and Gray 

Wolf Optimizer (GWO) have been 

integrated into phishing detection 

frameworks [21], [22]. For instance, Ali 

and Ahmed [20] proposed a hybrid 

intelligent phishing detection technique 

that combines feature selection with deep 

neural networks. Zhou et al. [21] presented 

an extended deep model to improve 

phishing awareness in semantic web 

systems. 

Moreover, GWO and its improved 

versions have been shown to be effective 

in optimizing the deep learning models to 

increase accuracy and generalization [22], 

[23], [24]. Despite these advancements, 

phishing remains a dynamic threat that 

requires continuous improvements in 

detection systems. 

 

Problem Statement 

Phishing attacks have become a significant 

cybersecurity threat, where criminals use 

fake emails to trick victims into revealing 

personal information. Traditional rule- 

based and machine learning algorithms 

have limited capabilities in handling the 

evolving nature of phishing attempts. To 

address this, the proposed model leverages 

neural networks (such as CNN, RNN, 

LSTM, and transformer-based models) and 

natural language processing (NLP) to 

identify malicious patterns and improve 

the accuracy of phishing detection. 

Proposed Methodology 

The step-by-step process adopted for 

implementing the proposed methodology 

is demonstrated in this section with the 

help of a flow chart (provided in Figure *). 
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Each module of the flow chart is further explained with its specific purpose. 
 

 

(a) Training Dataset Collection 

The data records for this survey were 

obtained from Kaggle.com, a popular 

website that provides openly accessible 

datasets. The collection of emails in the 

dataset is classified as either safe (HAM) 

or phishing. The data was downloaded and 

uploaded to Google Colab, a cloud-based 

development environment that offers 

sufficient processing power for deep 

learning operations. The dataset was then 

split into training and testing subsets to 

facilitate model evaluation and training. 

 

(b) Email Pre-processing 

Raw email texts undergo a comprehensive 

pre-processing phase to prepare them for 

training deep learning models. The 

following steps were performed: 

 

1. Text cleaning: The entire text was 

processed to maintain consistency. 

2. HTML tag removal: HTML tags and 

special characters were eliminated to 

remove unnecessary noise. 

3. Tokenization: The email content was 

divided into individual words or tokens. 

4. Lemmatization: Words were reduced 

to their root forms, minimizing 

vocabulary size. 

5. Text normalization: Additional 

normalization techniques were applied 

to ensure the data was in the optimal 

format for learning. 

 

(c) Deep Learning Model Training 

A deep learning model was trained to learn 

discriminatory patterns and features that 

distinguish  safe  emails  from  phishing 

emails using the pre-processed email data. 

Google Colab was used to run the training 

process, with GPU support to accelerate 

computations. 

 

(d) Optimizing the Deep Learning 

Framework 

An optimization approach was applied to 

tune the hyper parameters and improve 

model performance. Key variables such as 

learning rate, batch size, number of 

epochs, and optimization algorithms were 

adjusted. The goal of this fine-tuning 

process was to enhance both the accuracy 

and capacity of the model. 

 

(e) Feature Extraction from Testing 

Dataset 

The test subset of email data records was 

fed into the trained deep learning model. 

This model extracted patterns and features 

from these emails, which were used to 

evaluate the model's ability to generalize 

the knowledge gained during training. 

 

(f) Classification 

The deep learning classifier categorized 

each email in the test dataset as either safe 

or phishing, based on the extracted 

features. To assess the model's 

performance, the classification results 

were compared with the ground truth 

labels. 

 

Dataset 

The SMS Spam Collection is a dataset of 

5,574 SMS messages in English, classified 
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as either "spam" or "ham" (legitimate). 

Each  row of  the  dataset  contains two 

Random Forest's effectiveness in 

identifying spam  emails  were  1.00 for 

columns: V1, which labels the message as training and 0.9578 for testing, 

either  spam  or  ham,  and  V2,  which demonstrating excellent performance. 

contains the raw content of the message. 

Extracting relevant spam messages from 

usage claims was a difficult and time- 

consuming task, requiring the 

implementation of multiple websites to 

find pertinent spam information. 
 

 

Experiment and Results 

The results of the study's 

 

proposed 

framework are presented in this section. 

The tests utilized optimization approaches 

such as GWO (Gray Wolf Optimizer), DE 

(Differential Evolution), and GWO + DE 

to assess the performance of the Bi-GRU 

(Bidirectional Gated Recurrent Unit). 

Metrics such as accuracy, precision, recall, 

and the AUC-ROC curve were used to 

evaluate and compare the results. 
 

Experiment 1: GloVe-Based Spam 

Email Classification 

In this experiment, email text features for 

 
 

 

 
 

 

 

 

 

Experiment 2: Fast Text-Based Spam 

Email Classification 

This experiment compares the spam 

classification performance of three models: 
Linear SVC, Adaboost, and Random 

spam classification were processed using 

GloVe embedding. GloVe was used to 

convert data records into numerical vectors 

Forest, using a variety of features. The 

Random Forest model achieved an AUC- 

ROC score of 0.9836 and a maximum test 

before training three models: 

Forests, Adaboost, and SVM. 

Random 

Adaboost 

accuracy of 0.9776, demonstrating its 

ability to effectively capture feature 

achieved second-best performance with a 

training accuracy of 0.9589 and a test 

accuracy of 0.9507. SVM showed slightly 
lower performance with a training 

associations and distinguish 
and non-spam emails. 

 

In  comparison,  Adaboost 

etween spam 
 

 

achieved  an 

accuracy of 0.9468 and a test accuracy of 

0.9399. The AUC-ROC values for 

AUC-ROC score of 0.9059 and a test 

accuracy of 0.9157. 
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Experiment 3: Word2Vec-Based Spam AdaBoost  also  performs well,  with  a 

Email Classification 

In  this  experiment,  we  describe  spam 

email text using GloVe embeddings and 

assess how well three machine learning 

testing accuracy of 0.9381, showing 

strong generalization capability. However, 

SVM exhibits the lowest accuracy 

(0.8655), suggesting that it struggles with 

models—SVM, AdaBoost, and Random 

Forest—perform. 
According to the findings, Random Forest 

the  feature  representation  provided  by 
GloVe. Despite this, SVM achieves the 

highest AUC-ROC score (0.9651), 

attains the greatest testing accuracy 

(0.9641) and 

indicating its potential effectiveness in 

ranking spam and non-spam emails 

correctly. 
It is the top-performing model for this 

challenge, with an AUC-ROC of 0.9646. 

. 
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