Optimizing Dragonfly Algorithm using Ant Lion Algorithm for Solving Complex Numerical Optimization Problems

Neeraj Kumar Jha; Anupam Chaube Harish Chavre; Aditya Dhole Department of MCA, G H Raisoni College of Engineering & Management, Nagpur , Maharashtra, India

Abstract:

Optimization algorithms play a key role in solving complex computational problems across various disciplines. In this paper, we introduce a new hybrid model that integrates the Dragonfly Algorithm (DA) and the Ant Lion Optimizer (ALO) for optimization performance enhancement. The new hybrid model integrates the exploration ability of DA and the exploitation ability of ALO with the expectation of better convergence and optimal solutions. We applied the model to optimize 23 benchmarking functions, and the results indicate that the hybrid model is better than the traditional algorithm approach in generating smaller errors and scores in the area of optimization. The study indicates that the proposed hybrid model offers a feasible solution to solving high-dimensional optimization problems.

Keywords:

Dragonfly Algorithm (DA), Hybridization, Benchmark, Exploration, Exploitation

Introduction:-

Optimization is a basic mechanism for addressing complicated problems in the areas of science, engineering, and artificial intelligence. Although metaheuristic algorithms have proven highly effective in dealing with vast search spaces, individual algorithms tend to experience problems with premature convergence or poor exploitation. This paper presents a hybrid methodology that blends the strengths of the Dragonfly Algorithm (DA)[16] and the

Lion Optimizer (ALO)[17] Ant to facilitate a more uniformly distributed and effective search process. By utilizing the exploratory ability of DA and the enhanced exploitation capabilities of ALO, our proposed model optimizes both convergence rate and solution precision. The hybrid algorithm was evaluated on 23 benchmark functions, and the results were always superior to those of the individual DA and ALO, hence indicating an enhancement in optimization efficiency and stability. These findings hybrid metaheuristic imply that methodologies may be an effective substitute for addressing complicated optimization problems.

Literature Review:-

Fig1: Classification of Algorithms

IJMSRT25 JUN26

Tabel 1: Publication Details Flowchart:- [16][17]

Benchmark Function:-

Functions		Dimensions		Range	Louin
$F_{1}(S) = \sum_{m=1}^{s} S_{m}^{2}$		(10,30,50,100)		[-100, 100]	0
$F_2(S) = \sum_{m=1}^{z} S_m + \prod_{m=1}^{z} S_m $		(10,30,50,100)		[-10,10]	0
$F_{2}(S) = \sum_{m=1}^{2} (\sum_{n=1}^{m} S_{n})^{2}$		(10,30,50,100)		[-100,100]	0
$F_4(S) = max_m\{ S_m , 1 \le m \le z\}$		(10,30,50,100)		[-100,100]	0
Sr.no	Algorithm	Author		or Name	
1	Ant Colony Optimization (ACO)		Dorigo & Gambardella Et al. (1997)		
2	Artificial Bee Colony (ABC)		Karaboga Et al. (2005)		
3	Biogeography- Based Optimization (BBO)		Simo	n Et al. (2	2008)
4	Evolution Strategy (ES)		Rechenberg Et al. (1973)		
5	Electromagnetic Optimization (EO)		Birbil & Fang Et al. (2003)		
6	Black Hole Algorithm (BHA)		Hatamlou Et al. (2013)		
7	Social Spider Optimization (SSO)		Cuevas, Cienfuegos, Zaldívar Et al. (2013)		
8	Soccer League Competition (SLC)		Moosavian & Gholipour Et al.(2015)		

International Journal of Modern Science and Research Technology ISSN NO-2584-2706

$(S) = \sum_{m=1}^{n-1} [100(S_{m+1}-S_m^2)^2 + (S_m-1)^2] $ (10,30,50,100)		[-38,38]		0
$F_6(S) = \sum_{m=1}^{s} ([S_m + 0.5])^2$ (10,30,50,100)		[-100, 100]		0
$F_{7}(S) = \sum_{m=1}^{Z} mS_{m}^{4} + random [0, 1] $ (10,30,50,10)		[-1.28, 1.28]		0
$F_{g}(S) = \sum_{m=1}^{s} -S_{m}sin(\sqrt{ S_{m} })$	(10,30,50,100)	[-50	0,500]	-418.9829
$S) = \sum_{m=1}^{Z} [S_m^2 - 10\cos(2\pi S_m) + 10] $ (10.30,50,100)		[-5.12,5.12]		0
$F_{10}(S) = -20exp \left(-0.2 \sqrt{\left(\frac{1}{\pi} \sum_{m=1}^{\pi} S_m^2\right)}\right) - exp \left(\frac{1}{\pi} \sum_{m=1}^{\pi} cos(2\pi S_m) + 20 + d\right)$	$= -20exp \ (-0.2\sqrt{\left(\frac{1}{a}\sum_{m=1}^{2} S_{m}^{2}\right)}\) - $ (10,30,50,100)		32]	0
$F_{12}(S) = 1 + \sum_{m=1}^{2} \frac{s_m^2}{4000} - \Pi_{m=1}^{*} \cos \frac{s_m}{\sqrt{m}}$	(10,30,50,100)	[-600, 600]		0
$\begin{split} F_{12}(S) &= \frac{\pi}{4} \Big\{ 10 \sin(n\tau_1) + \sum_{m=1}^{s-1} (\tau_m - 1)^2 \big\{ 1 + \\ 10 \sin^2(n\tau_m_{n+1}) \big\} + (\tau_x - 1)^2 \big\} + \sum_{m=1}^{s} u(S_m, 10.100.4) \\ \tau_m &= 1 + \frac{s_{m+1}}{s} \\ u(S_m, b, x, i) &= \begin{cases} x(S_m - b)^i & S_m > b \\ 0 x(-S_m - b)^i & S_m < b \\ x(-S_m - b)^i & S_m < -b \end{cases} \end{split}$	(10,30,50,100)	[-50,5	50]	0
$\begin{split} F_{12}(S) &= 0.1 \big\{ sin^2 (3\pi S_m) + \sum_{m=1}^s (S_m - 1)^2 [1 + sin^2 (3\pi S_m + 1)] + (x_z - 1)^2 [1 + sin^2 2\pi S_z) \big] \end{split}$	(10,30,50,100)	[-50,5	0]	0
$F_{14}(S) = \begin{bmatrix} \frac{1}{500} & +\sum_{n=1}^{2} 5 \frac{1}{n + \sum_{m=1}^{2} (s_m - b_{mn})^6} \end{bmatrix}^{-1}$		2	[-65.536, 65.536]	1
$F_{15}(S) = \sum_{m=1}^{11} [b_m - \frac{s_1(a_m^2 + a_m s_2)}{a_m^2 + a_m s_2}]^2$		4	[-5, 5]	0.00030
$F_{16}(S) = 4S_1^2 - 2.1S_1^4 + \frac{1}{2}S_1^6 + S_1S_2 - 4S_2^2 + 4S_2^4$		2	[-5, 5]	-1.0316
$F_{17}(S) = (S_2 - \frac{5.1}{4\pi^2}S_1^2 + \frac{5}{\pi}S_1 - 6)^2 + 10(1 - \frac{1}{9\pi})\cos S_1 + 10$		2	[-5, 5]	0.398
$F_{ii}(S) = \left[1 + (S_i + S_j + 1)^2 (19 - 14 S_i + 3S^2_i - 14 S_j + 6S_i S_j + 5S_i - 5S_i$		2	[-2,2]	3
$F_{19}(S) = -\sum_{m=1}^{4} d_m \exp\left(-\sum_{m=1}^{3} S_{mn}(S_m - q_{mn})^2\right)$		3	[1, 3]	-3.32
$\sum_{m=1}^{\infty} d_m \exp\left(-\sum_{m=1}^{6} g_{mn} (S_m - q_{mn})^2\right)$		6	[0, 1]	-3.32
$E_{21}(S) = -\sum_{m=1}^{5} [(S - b_m)(S - b_m)^T + d_m]^{-1}$		4	[0,10]	-10.1532
$F_{22}(S) = -\sum_{i=1}^{7} [(S - b_m)(S - b_m)^T + d_m]^{i}$	1	4	[0, 10]	-10.4028
$\sum_{m=1}^{\infty} (S) = -\sum_{m=1}^{7} [(S - b_m)(S - b_m)^T + d_m]^{-1}$				

Search Space:-

Results & Discussions:-

Function	Original	Hybrid	
	Algorithm	Algorithm	
	Value	Value	
F1	0.010844	0.17057	
F2	0.41577	0.17384	
F3	16.3224	3.8555	
F4	5.0088	0.80819	
F5	9.4514	9.5206	
F6	3.8895	0.18766	
F7	0.039007	0.015949	
F8	-2491.2016	-3221.5408	
F9	9.0597	8.0225	
F10	3.9508	1.7239	
F11	0.33914	0.72508	
F12	0.65975	0.54286	
F13	0.21484	0.20924	
F14	0.998	0.998	
F15	0.0016554	0.00062231	

F16	-1.0316	0	
F17	0.39789	0.39789	
F18	3	3	
F19	-3.8628	-3.8628	
F20	-3.322	3.1801	
F21	-10.1532	10.1526	
F22	-10.4029	10.4027	
F23	-2.8066	10.5334	

From above table, conclude that hybrid DA-ALO giving more relevant and optimize value as compared to original algorithm. Some values are remained unchanged and some are showing fluctuation in values. Results of hybrid DA-ALO are impressive. Function such as F2, F3, F4, F6, F7, F8, F9, F10, F12, F13, F15 and F23 shows the enhancement in value.

Conclusion:-

This research improves the performance of DragonFly Algorithm using hybridization approach of (DA+ALO), The hybrid algorithm being tested on 23 benchmark functions out of which 12 functions provide a best optimal value compared to the original Algorithm which demonstrating an improvement in DragonFly Algorithm performance.

References:-

[1] W. Y. Lin, "A novel 3D fruit fly optimization algorithm and its applications in economics," Neural Comput. Appl., 2016, doi: 10.1007/s00521-015-1942-8.

[2] Y. Cheng, S. Zhao, B. Cheng, S. Hou, Y. Shi, and J. Chen, "Modeling and optimization for collaborative business process towards IoT applications," Mob. Inf. Syst., 2018, doi: 10.1155/2018/9174568.

[3] X. Wang, T. M. Choi, H. Liu, and X. Yue, "A novel hybrid ant colony optimization algorithm for emergency transportation problems during postdisaster scenarios," IEEE Trans. Syst. Man, Cybern. Syst., 2018, doi: 10.1109/TSMC.2016.2606440.

[4] I. E. Grossmann, Global Optimization in Engineering Design (Nonconvex Optimization and Its Applications), vol. 9. 1996.

[5] R. V. Rao and G. G. Waghmare, "A new optimization algorithm for solving complex constrained design optimization problems," vol. 0273, no. April, 2016, doi: 10.1080/0305215X.2016.1164855.

[6] E.-S. M. El-Kenawy, M. M. Eid, M. Saber, and A. Ibrahim, "MbGWO-SFS: Modified Binary Grey Wolf Optimizer Based on Stochastic Fractal Search for Feature Selection," IEEE Access, 2020, doi: 10.1109/access.2020.3001151.

[7] M. Nouiri, A. Bekrar, A. Jemai, S. Niar, and A. C. Ammari, "An effective and distributed particle swarm optimization algorithm for flexible job-shop scheduling problem," J. Intell. Manuf., 2018, doi: 10.1007/s10845-015-1039-3.

[8] Y. Li, J. Wang, D. Zhao, G. Li, and C. Chen, "A two-stage approach for combined heat and power economic emission dispatch: Combining multiobjective optimization with integrated decision making," Energy, 2018, doi: 10.1016/j.energy.2018.07.200.

[9] D. Yousri, T. S. Babu, and A. Fathy, "Recent methodology based Harris hawks optimizer for designing load frequency control incorporated in multiinterconnected renewable energy plants," Sustain. Energy, Grids Networks, 2020, doi: 10.1016/j.segan.2020.100352.

[10] R. Al-Hajj and A. Assi, "Estimating solar irradiance using genetic programming technique and meteorological records," AIMS Energy, 2017, doi: 10.3934/energy.2017.5.798.

[11] R. Al-Hajj, A. Assi, and F. Batch, "An evolutionary computing approach for estimating global solar radiation," in 2016 IEEE International Conference on Renewable Energy Research and Applications, ICRERA 2016, 2017. doi: 10.1109/ICRERA.2016.7884553.

[12] R. A. Meyers, "Classical and Nonclassical Optimization Methods Classical and Nonclassical Optimization Methods 1 Introduction 1 1.1 Local and Global Optimality 2 1.2 Problem Types 2 1.3 Example Problem: Fitting Laser-induced Fluorescence Spectra 3 1.4 Criteria for Optimization 4 1.5 Multicriteria Optimization 4," Encycl. Anal. Chem., pp. 9678–9689, 2000, [Online]. Available: https://pdfs.semanticscholar.org/5c5c/908bb00a544 39dcee50ec1ada6b735694a94.pdf

[13] N. Steffan and G. T. Heydt, "Quadratic programming and related techniques for the calculation of locational marginal prices in distribution systems," in 2012 North American Power Symposium (NAPS), 2012, pp. 1–6. doi: 10.1109/NAPS.2012.6336310.

[14] M. Mafarja et al., "Evolutionary Population Dynamics and Grasshopper Optimization approaches for feature selection problems," Knowledge-Based Syst., vol. 145, pp. 25–45, 2018, doi: 10.1016/j.knosys.2017.12.037.

[15] A. A. Heidari, R. Ali Abbaspour, and A. Rezaee Jordehi, "An efficient chaotic water cycle algorithm for optimization tasks," Neural Comput. Appl., vol. 28, no. 1, pp. 57–85, 2017, doi: 10.1007/s00521-015 2037-2.

[16] Mirjalili, S. (2015). The Ant Lion Optimizer.Advances in Engineering Software, 83, 80–98.DOI: 10.1016/j.advengsoft.2015.01.010

[17] Mirjalili, S. (2016). Dragonfly algorithm: a new meta-heuristic optimization technique for solving single-objective, discrete, and multiobjective problems. Neural Computing and Applications, 27, 1053 1073. DOI: 10.1007/s00521-015-1920-1