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Abstract 

Accurate price prediction is critical for e- 

commerce platforms, particularly for feature 

rich products like laptops. This study 

evaluates ten machine learning (ML) 

algorithms; six baseline regression models 

(Linear Regression, Ridge, Lasso, Support 

Vector Regression, Decision Tree, K- 

Nearest Neighbors) and four ensemble 

models (Random Forest, Gradient Boosting, 

AdaBoost, XGBoost), using a Kaggle 

dataset of 1,300 laptop entries. Features 

include processor type, RAM, storage, 

screen resolution, and brand. Performance 

was assessed via Root Mean Squared Error 

(RMSE), Mean Absolute Error (MAE), and 

R², with GridSearchCV for hyperparameter 

tuning. Ensemble models, notably XGBoost 

and Gradient Boosting, outperformed 

baseline regressors, achieving RMSE ≈ 

49,885 and R² ≈ 0.89 on the validation set. 

Feature importance analysis identified 

RAM, CPU, and brand as key price drivers. 

This system supports real time pricing in e- 

commerce, balancing accuracy and 

computational efficiency. 
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1. Introduction 

The rise in the use of e-commerce platforms 

has increased the need for intelligent and 

 

efficient prediction systems to enhance 

customer decision and vendor 

competitiveness. Laptops with different 

specifications such as processor type and 

speed, RAM size, storage and brand present 

complex pricing technique that traditional 

method struggle to address [1]. Machine 

learning (ML) offers a robust and reliable 

solution by modeling non-linear 

relationships in feature-rich datasets [2], [3]. 

Regression models especially Linear 

Regression (LR) and Support Vector 

Regression (SVR) are valued for 

interpretability, while ensemble methods, 

such as Random Forest (RF) and XGBoost, 

excel in capturing complex patterns [4], [5]. 

However, systematic comparisons of these 

MLapproaches,particularlywithhyperparame 

tertuningand other optimization techniques, 

are limited in laptop price prediction [6]. 

This study addresses this limitation by 

evaluating six regression models, which 

include; Linear Regression, Ridge, Lasso, 

SVR, Decision Tree, K-Nearest Neighbors 

(KNN), and four ensemble models 

including; Random Forest, Gradient 

Boosting, AdaBoost, XGBoost on a Kaggle 

dataset of 1,300 laptops. The performances 

of the models were assessed using RMSE, 

MAE, and R², with GridSearchCV for 

tuning. Feature importance analysis 

identifies key price drivers, offering 

practical insights for e-commerce 

applications. 
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Price prediction using ML spans domains 

like real estate [7], automobiles [8], and 

electronics [9]. Yi [10] applied Linear 

Regression, Random Forest, and XGBoost 

to forecast Walmart sales, highlighting 

ensemble methods’ superiority in non-linear 

data. Gupta and Verma [9] used Gradient 

Boosting for smartphone price prediction, 

achieving high accuracy with feature-rich 

datasets. 

In laptop price prediction, Guo and He [1] 

analyzed 1,303 laptops, identifying brand, 

CPU, and RAM as key price drivers using 

regression models. Ballamudi [6] compared 

Linear Regression, Histogram-based 

Gradient Boosting, and XGBoost, reporting 

XGBoost’s superior R² (≈ 0.7752 on 

testing). Tian [3] achieved RMSE ≈ 294.11 

and R² ≈ 0.85 with XGBoost, emphasizing 

feature engineering but lacking ensemble 

comparisons. 

Other studies provide context: Pudaruth et 

al. [8] used regression models for car price 

prediction, noting Decision Trees’ 

limitations. Wang et al. [11] compared 

Decision Trees and Random Forest for 

electronics pricing, favoring the latter. Li 

and Zhang [12] applied SVR and Gradient 

Boosting to gadget prices but overlooked 

hyperparameter tuning. Recent works 

emphasize ensemble methods [4], [13] and 

feature selection [14]. Chen and Guestrin [4] 

introduced XGBoost for scalable boosting, 

while Breiman [5] formalized Random 

Forest’s robustness. Kumar and Singh [15] 

highlighted hyperparameter tuning’s impact. 

This study advances prior work by: 

1. Comparing ten ML algorithms with tuned 

hyperparameters. 

2. Analyzing feature importance for pricing 

insights. 

3. Evaluating computational efficiency for 

real-timee-commercedeployment. 

 

2. Materials and Methods 

The dataset used in this study was sourced 

from Kaggle [16], comprising 1,300 laptop 

entries with 12 independent attributes 

(laptop_ID, Company, Product, TypeName, 

Inches, ScreenResolution, Cpu, Ram, 

Memory,  Gpu,  OpSys,  Weight)  and  one 

dependent variable (Price_euros). The dataset 

includes a mix of numeric attributes (e.g., 

Ram, Inches) and categorical attributes (e.g., 

Company, OpSys), necessitating specific 

preprocessing steps to ensure compatibility 

with machine learning algorithms (Fig. 1). No 

missing values were identified in the dataset, 

but certain attributes, such as Weight and 

Ram, required conversion from string to 

numeric formats to facilitate analysis (Fig. 2). 

The dataset was partitioned into an 80% 

training set and a 20% testing set, with 10- 

fold cross-validation applied to ensure robust 

model evaluation. All experiments were 

conducted using Python 3.9, with scikit-learn 

(version 1.2.2) [17] and XGBoost (version 

1.7.3) libraries, executed on a computing 

system equipped with an Intel i7 processor 

and16GBofRAM. 
 

Figure 1: Output of the first few rows of the 

dataset (source: Author) 
 

 

Figure 2: Output of the statistical description 

of the dataset (source: Author) 

The methodology followed a structured 

pipeline: 

Data Preprocessing: To prepare the dataset 

for effective machine learning model 

training, a comprehensive preprocessing 

pipeline was implemented to address the 

diverse nature of the dataset’s attributes. 

Categorical features, including Company, 

Product, TypeName, ScreenResolution, 

Cpu, Memory, Gpu, and OpSys, were 

transformed into numeric representations 

using label encoding, as provided by the 

scikit-learn library’s LabelEncoder module 

http://www.ijmsrt.com/
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[17]. This transformation assigns a unique 

integer to each category, enabling machine 

learning algorithms to process categorical 

data effectively. Label encoding was chosen 

for its simplicity and efficiency, particularly 

suitable for tree-based models that are less 

sensitive to the ordinal implications of 

encoded values [17]. 

Numeric features of the laptops such as; 

Inches, Ram, and Weight, showed varying 

scales and units, which could adversely 

affect the performance of algorithms 

sensitive to feature magnitude, such as 

Support Vector Regression (SVR) and K- 

Nearest Neighbors (KNN). To mitigate this, 

all numeric features were standardized using 

the StandardScaler from scikit-learn [17]. 

Standardization of the data transformed each 

feature in the dataset to have a mean of zero 

and a standard deviation of one, ensuring 

that no single feature disproportionately 

influences the model due to its scale. This 

step was critical for improving model 

convergence and ensuring fair comparisons 

across algorithms [17]. 

To gain insights into the relative importance 

of features in predicting laptop prices, a 

feature importance analysis was conducted 

using two complementary approaches: 

Random Forest feature importance and 

permutation importance [5], [18]. The 

Random Forest method, based on the work 

of Breiman [5], calculates feature 

importance by assessing the reduction in 

model accuracy when a feature’s values are 

permuted, thereby quantifying each feature’s 

contribution to predictive performance. 

Permutation importance, as described by 

Altmann et al. [18], further validates these 

findings by randomly shuffling each 

feature’s values and measuring the resultant 

impact on model accuracy. This dual 

approach ensured robust identification of 

key price drivers, such as RAM, CPU, and 

brand, which were consistently highlighted 

as significant predictors across both 

methods. The preprocessing steps, including 

label encoding, standardization, and feature 

importance analysis, were visualized to 

confirm their effectiveness (Fig. 3). 

Baseline Regression Models: To establish a 

comprehensive benchmark for laptop price 

prediction, six baseline regression models 

were implemented, each selected for its 

distinct approach to modeling relationships 

between input features and the target 

variable (Price_euros). These models were 

chosen to represent a spectrum of regression 

techniques, from simple linear methods to 

non-linear approaches, enabling a thorough 

comparison with ensemble methods. The 

baseline models and their functionalities are 

described as follows: 

1. Linear Regression: This model assumes a 

linear relationship between the input 

features and the target variable, estimating 

coefficients to minimize the residual sum 

of squares [19]. Linear Regression is 

computationally efficient and interpretable, 

making it suitable for datasets with 

predominantly linear patterns. However, 

its simplicity may limit its ability to 

capture complex, non-linear interactions 

among laptop features [19]. 

2. Ridge Regression: An extension of Linear 

Regression, Ridge Regression incorporates 

L2 regularization to penalize large 

coefficients, thereby reducing the risk of 

overfitting in the presence of 

multicollinearity among features [20]. This 

model is particularly useful when features 

like RAM and CPU are correlated, as it 

stabilizes coefficient estimates and 

improves generalization [20]. 

3. Lasso Regression: Similar to Ridge, Lasso 

Regression applies L1 regularization, 

which not only prevents overfitting but 

also performs feature selection by 

shrinking less important feature 

coefficients to zero [20]. This property is 

advantageous for identifying the most 

influential predictors in the laptop dataset, 

such as brand and processor type [20]. 

4. Support Vector Regression (SVR): SVR 

employs kernel functions (e.g., radial basis 

function) to model non-linear relationships 

by mapping input features into a higher- 

dimensional space [21]. This approach 

allows SVR to capture complex patterns in 

the dataset, though its performance is 
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sensitivetokernelchoiceand hyperparameter 

settings, requiring careful tuning [21]. 

5. Decision Tree Regression: This model 

constructs a tree structure by recursively 

splitting the input space based on feature 

thresholds, enabling it to capture non- 

linear relationships and interactions [22]. 

While Decision Trees are intuitive and 

capable of handling both numeric and 

categorical data, they are prone to 

overfitting, particularly with noisy datasets 

like the laptop price dataset [22]. 

6. K-Nearest Neighbors (KNN) Regression: 

KNN predicts the target variable by 

averaging the prices of the k nearest data 

points in the feature space, based on a 

distance metric (e.g., Euclidean distance) 

[23]. Its non-parametric nature allows it to 

adapt to complex patterns, but its 

performance depends heavily on the choice 

of k and is computationally intensive for 

large datasets [23]. 

Each baseline model was initially evaluated 

using default hyperparameters to establish a 

performance baseline, followed by 

hyperparameter tuning to optimize 

predictive accuracy. The models were 

assessed using 10-fold cross-validation to 

ensure robust performance estimates [26]. 

 

Ensemble Models: To leverage the 

strengths of multiple learners and improve 

predictive accuracy, four ensemble models 

were implemented, each designed to address 

the limitations of individual baseline models 

by combining their predictions. Ensemble 

methods are particularly effective for 

complex datasets like laptop prices, where 

non-linear interactions and feature 

dependencies are prevalent [4], [5]. The 

ensemble models and their methodologies 

are detailed below: 

1. Random Forest Regression: Random Forest 

aggregates predictions from multiple 

decision trees, each trained on a random 

subset of the data and features, to reduce 

overfitting and improve robustness [5]. By 

averaging the outputs of individual trees, 

Random Forest captures complex patterns 

while maintaining stability against noise, 

making it suitable for the heterogeneous 

laptop dataset [5]. Its feature importance 

metrics also provide valuable insights into 

key price drivers [5]. 

2. Gradient Boosting Regression: This model 

builds an ensemble of weak learners 

(typically decision trees) in a sequential 

manner, where each tree corrects the errors 

of its predecessors by minimizing a loss 

function (e.g., mean squared error) [24]. 

Gradient Boosting’s iterative approach 

enhances predictive accuracy but requires 

careful tuning of parameters like learning 

rate and the number of estimators to avoid 

overfitting [24]. 

3. AdaBoost Regression: AdaBoost (Adaptive 

Boosting) constructs an ensemble by 

iteratively training weak learners, assigning 

higher weights to misclassified or poorly 

predicted instances to focus subsequent 

models on difficult cases [25]. While 

effective for improving weak learners, 

AdaBoost’s performance may be limited by 

noise in the dataset, necessitating robust 

preprocessing [25]. 

4. XGBoost Regression: XGBoost (Extreme 

Gradient Boosting) is an optimized 

implementation of gradient boosting that 

incorporates advanced regularization (L1 

and L2 penalties) and parallel processing for 

improved scalability and accuracy [4]. Its 

ability to handle missing values, capture 

non-linear interactions, and optimize 

computational efficiency makes it 

particularly suitable for the laptop price 

dataset [4]. 

 

Evaluation and Tuning: The models were 

evaluated using Root Mean Square Error 

(RMSE), MAE, and R². 

GridSearchCV tuned hyperparameters (e.g., 

KNN neighbors: 1–21; Gradient Boosting 

estimators: 50–500) [26]. 10-fold cross- 

validation ensured robust estimates [26]. 

 

Model Selection: The best model out of all 

developed balanced RMSE, R², and 

computational efficiency. 

Each ensemble model was evaluated using 

10foldcrossvalidation, with hyperparameters 

tuned via GridSearchCV to maximize 

performance [26]. For instance, Random 
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Forest was tuned for the number of trees and 

maximum depth, while XGBoost was 

optimized for learning rate, number of 

estimators, and regularization parameters. 

The results of these models were compared 

against baseline models to identify the most 

effective approach for laptop price 

prediction (Fig. 6, Fig. 7). 

 

Results 

This section shows the different results of 

our analysis ranging from label encoding to 

box plots of the baseline algorithm, 

Preprocessing: Label encoding transformed 

categorical features as shown in Fig. 3. 

Standardization improved convergence for 

SVR and KNN as depicted in Fig. 4. Feature 

importance analysis identified RAM, CPU, 

and brand as top predictors, which are in 

tandem with authors [1] and [6]’s works. 

 

 

Figure 3: The dataset after label encoding 

has been done on the non-numeric values to 

allow them to be used for analysis (source: 

Author) 

 

Baseline Models: Linear Regression, Ridge, 

and Lasso achieved R² ≈ 0.70–0.75, 

indicating linear relationships. SVR and 

Decision Tree showed higher variance (R² ≈ 

0.65–0.70). KNN improved post-tuning (R² 

≈ 0.78) but trailed ensembles. See Fig. 4 for 

details. 

 

 

 

Figure 4: Comparison of the algorithms on 

standardized dataset (source: Author) 

 

 

Figure 5: Result of grid search tuning 

performed on KNN from the neighborhood 

of 1 to 21 on the interval of 2 (odd 

numbers). (source: Author) 

 

Ensemble Models: As shown in Fig. 6 and 

Fig. 7, XGBoost and Gradient Boosting 

outperformed others, with tuned XGBoost 

achieving RMSE ≈ 49,885 and R² ≈ 0.89 on 

the validation set. Gradient Boosting with 

500 estimators followed in performance 

with an RMSE ≈ 50,012, and R² ≈ 0.88). 

AdaBoost lagged (R² ≈ 0.82). 

Tuning Impact: Fig 5 and Fig. 7 show that 

GridSearchCV reduced RMSE by 8–12% 

for ensembles. 
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Figure 6: Comparison of the ensemble 

algorithm on standardized dataset (source: 

Author) 

 

 

Figure 7: Result of grid search tuning 

performed on Gradient Boosting from the 

estimators of 50 to 500 on the interval of 50 

(even numbers). (source: Author) 
 

 

Figure 8: Root Mean Square and r_square of 

the final model 
 

 

Figure 9: performance score of the model 

 

Discussion 

Ensemble models, particularly XGBoost and 

Gradient Boosting, excelled due to their 

ability to capture non-linear feature 

interactions, this is in tandem with authors 

[4] and [24]. XGBoost’s performance 

(RMSE ≈ 49,885, R² ≈ 0.89) aligns with 

Tian [3] and Ballamudi [6]. Feature 

importance confirmed RAM, CPU, and 

brand as key drivers [1]. 

Baseline models struggled with complex 

configurations [19]. KNN was robust post- 

tuning but computationally intensive [23]. 

SVR’s performance was limited by kernel 

choice [21]. Hyperparameter tuning was 

critical, reducing RMSE significantly [15]. 

However, XGBoost showed overfitting 

risks, suggesting stricter regularization [4]. 

Computational efficiency is vital for e- 

commerce. XGBoost’s inference time (0.3 

seconds) may challenge real-time systems, 

while Random Forest (0.05 seconds) is more 

practical  [5].  The  static  dataset  limits 

generalizability; dynamic pricing requires 

continual retraining [11]. Future work could 

explore online learning [27] or 

interpretability through SHAP [28]. 

 

Summary and Conclusion 

This study compared six regression and four 

ensemble models on a 1,300-entry Kaggle 

laptop dataset. XGBoost and Gradient 

Boosting achieved the best performance 

(RMSE ≈ 49,885, R² ≈ 0.89), with Random 

Forest offering efficiency. Feature 

importance highlighted RAM, CPU, and 

brand as key predictors [1], [3]. Ensemble 

methods suit e-commerce pricing, with 

Random Forest balancing accuracy and 

latency. Future work should incorporate 

temporal data, richer features, and 

interpretability techniques [28]. 

These findings confirm that ensemble 

methods better capture non-linear 

interactions among laptop features (CPU, 

RAM, storage, brand, screen resolution) 

than linear regressions, aligning with similar 

conclusions in related works on price 

prediction for electronics and retail products. 

Hyperparameter tuning significantly 

improves ensemble performance but must 

guard against overfitting via robust 

validation practices. 

Hence for practical deployment in e- 

commerce or vendor pricing systems where 

the choice between models should balance 

predictive accuracy and inference latency, 

Random Forest will offer a good 

compromise, while XGBoost/Gradient 

Boosting delivers maximal accuracy on 

slightly higher computational cost. Future 

work should incorporate temporal pricing 

data, richer feature sets (brand sentiment, 

market trends), and explore model-update 

strategies for dynamic marketplaces. 

Additionally, interpretability techniques 

(e.g., SHAP values) can enhance 

transparency for stakeholders. 
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