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Abstract 

Voltage stability is referred to a fundamental 

requirement for stable and reliable operation 

of modern power systems, particularly under 

growing penetration of renewable energy 

sources, such like; distributed generation, 

and inverter-based technologies. This paper 

reviews recent advances of three years in 

voltage   stability    assessment    and 

improvement, give  emphasis   to   the 

integration of artificial intelligence (AI) 

techniques and metaheuristic optimization 

algorithms. It look at data-driven approaches 

for predictive   modeling   and  real-time 

decision-making,      together     with 

optimization-based strategies for reactive 

power dispatch, flexible AC transmission 

system (FACTS) device placement, and 

distributed generation siting. In generalit 

used voltage stability indices, optimization 

objectives, and constraints are formalized, 

with add-ontables. Comparative analyses 

summarize the performance of AI models, 

metaheuristic  methods,    and    hybrid 

frameworks. Key challenges are discussed, 

including generalization under   topology 

changes, Measurementsparsity, renewable 

energy uncertainty, and  the need    for 

explainable decision support. Future 

 

directions highlight physics-informed AI, 

graph-based learning, robust optimization, 

and coordinated multi-agent control for 

sustainable and resilient voltage stability 

management. 

 

Keywords 

Voltage stability, Artificial intelligence, Met 

heuristics, Reactive power optimization, 

Power system resilience. 

 

1. Introduction 

Voltage stability refers to the ability of a 

power system to maintain acceptable voltage 

levels at all buses under normal operating 

conditions and following disturbances. This 

capability is increasingly challenged by the 

integration of renewable energy sources 

(RES), inverter-based resources (IBRs), and 

distributed generation (DG), which 

introduce low-inertia conditions, variable 

generation, and frequent topology changes 

[1], [2]. These factors can reduce voltage 

security margins and increase the risk of 

voltage collapse. 

Conventional voltage stability assessment 

(VSA) techniques, such as continuation 

power flow (CPF), PV/QV curve analysis, 
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and sensitivity-based indices, remain 

effective for offline planning studies but are 

computationally demanding for real-time 

operation[3], [4], [5], [6]. At the same time, 

preventive and corrective measures 

including reactive power support, optimal 

placement of FACTS devices, on-load tap 

changer (OLTC) coordination, and DG 

siting often require solving non-convex, 

multi-objective optimization problems [7]. 

Such problems are NP-hard, making exact 

solutions computationally infeasible for 

large-scale systems. 

Metaheuristic optimization algorithms, 

including particle swarm optimization 

(PSO), grey wolf optimizer (GWO), 

differential evolution (DE), whale 

optimization algorithm (WOA), and their 

multi-objective variants, have been widely 

applied for reactive power dispatch, FACTS 

device placement, and DG siting [8], [9], 

[10]. These methods excel in handling 

mixed discrete–continuous variables and 

avoiding local optima. 

In parallel, AI techniques including machine 

learning (ML), deep learning (DL), and 
reinforcement learning (RL) have been 

successfully deployed for data-driven VSA, 
critical bus detection, and stability margin 

2. Provides unified mathematical 

formulations for stability indices, 

optimization objectives, and AI training 

processes. 

3. Presents comparative tables summarizing 

datasets, algorithms, indices, test 

systems, and performance metrics. 

4. Identifies open challenges and outlines a 

research roadmap for sustainable and 

resilient voltage stability management. 

 

2. Fundamentals of Voltage Stability 

2.1 Power Flow Equations 

For an n-bus power system, the complex 
power injection at bus ii is given by: 

Si=Pi+jQi=Vi ∑n Vk (GIK − jBik)ej(θi–θk) 

2.1 

WhereVi and θiare the voltage magnitude, 

and angle at busi,GikBik are conductance 

and susceptance between buses i and k 
2.2 Voltage Stability Indices 
(a) L-IndexPartition buses into generator (G) 

and load (L) sets. From the admittance 

matrix: 

F = YLL
-1YLG , Li =1-∑gϵG F  

Vg 

i 

2.2 

(b) The venin-Based Margin 

μ = 1 − |Zth 
prediction[8], [11], [12]. Recent hybrid 

approaches integrate AI with metaheuristics, 

Zl 

 
(c) PV-QV Curve Analysis 

2.3  

enabling predictive and prescriptive voltage 

stability management under uncertainty[7], 

[12]. 

Research gap: While prior reviews have 

addressed AI-based VSA or metaheuristic- 

based voltage control [13], [14]separately, 

few have provided an integrated analysis of 

both domains within a unified framework, 

incorporating recent advances such as 

graph-based learning, physics-informed AI, 

and coordinated multi-agent RL control. 

Contributions: This review 

1. Consolidates recent three years 

developments in AI- and met heuristic- 

based voltage stability enhancement. 

From CPF results, the nose point in PV 
curves and the lowest point in QV curves 
indicate voltage stability margins (VSM). 
2. 3 Classical Stability Enhancement 

Traditional methods include installing shunt 

capacitors, adjusting transformer taps, and 

re-dispatching reactive power generation 

[24]. While effective in steady conditions, 

these approaches are limited under fast- 

changing operational scenarios caused by 

RES variability. 

 

3. Problem Formulations 
Voltage stability enhancement and 

assessment tasks can be formulated into 
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three main computational frameworks: (i) 

data-driven voltage stability assessment 
min w1PP (u) + w ∑N | V (u) − 

i–1 
Vref | + w23 ∑N  = max (0, Li(u) − τ) 

(VSA), (ii) optimization-based control for 
preventive and corrective actions, and (iii) 

i 

Where: 

i–1 

3.2 

reinforcement learning (RL)-based 
coordinated control. 

 

3.1 Data-Driven Voltage Stability 

Assessment 

In a data-driven setting, the objective is to 

train a model fθ that maps real-time system 

measurements x to either a classification 

label y (secure/insecure) or a continuous 

voltage stability margin mm. 

1. u is the control vector (reactive outputs, 
tap positions, capacitor sizes), 

2. PPis total active power loss, 

3. Vrefis the reference voltage for bus ii, 

4. Li(u) is the L-index, 

5. τ is the allowable stability threshold, 
6. w1, w2w3are weighting factors. 

 
Constraints: 
𝑉I ≤𝑉i≤𝑉i  ∀ 

Let x ∈ Rd  represent feature vectors 

comprising bus voltages,  phase  angles, 

min max  i 

𝑉min≤𝑉  ≤𝑉max,∀ 
active/reactive power injections, line flows, 

and network topology indicators, often 

derived from PMU data streams. The 

general learning objective is: 

minθ E(x,y)  [P(fθ(x), y)] + Ω(θ ) 
3.1 

WhereP(⋅)is the loss function (cross-entropy 

for classification, mean squared error for 

regression), and Ω(θ) is a regularization 

term to improve generalization. 

Example targets: 

i. Classification: 

y ∈ {Secure, Insecure} 
ii. Regression: m = VSM, L − index, | 

Zth |/| ZL | 

g g g g 

 

AC power flow equations satisfied 

 

3.3 FACTS/DG Placement and Sizing 
Placement and sizing of FACTS devices 
(STATCOM, SVC, TCSC, UPFC) and DG 

units can be modeled as a Mixed-Integer 
Nonlinear Programming (MINLP) 

problem[6], [13], [15]: 

minz,s w1PP (z, s) + w2VD(z, s) + 

w3Cost(z, s) + w4VSI_risk 
3.3 

Subject to: 

i. Voltage limits:VI ≤Vi≤Vi 
iii. 

Training datasets are generated from ii. Thermal limits:|Sij |≤S
ij 

time-domain simulations or 

continuation power flow (CPF) 

under varying operating conditions 

and contingencies. 

 

3.2 Optimal Reactive Power Dispatch 

(ORPD) 

Reactive power dispatch seeks optimal 

generator voltage set-points, transformer tap 

settings, and reactive compensation to 

minimize system losses, voltage deviations, 

and instability risk[6], [13], [15]. The multi- 

objective formulation is: 

iii.  Stability constraints:Li≤ τ for all buses. 
Here: 

i. z ∈ {0,1}n
 are binary decision variables 

for device placement, 

ii. S represents ncontinuous sizing variables. 

3.4 Reinforcement Learning for 
Volt/VAR Control 

The voltage control problem can be cast as 

a Markov Decision Process (MDP) with: 

i. State space SS: Bus voltages, angles, 

reactive power flows, and device statuses. 

http://www.ijmsrt.com/
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ii. Action space AA: Reactive power 

injections, tap changes, FACTS set- 

points. 

iii. Reward RR: 

Rt = −α ∑i | Vi − Vref | − β tap_wear − 
γ instability_ risk 3.4 

 Transition dynamics: Governed by 

AC power flow and grid operational 
physics. 

The RL agent seeks: 

π ∗= arg minπ E[∑∞  γt Rt 

3.5  

Where π is the control policy and γ\gamma 

is the discount factor. 

Safety constraints can be integrated via 

physics-informed critics or shielding 

layers that override unsafe actions. 

 

4. AI-Based Voltage Stability Assessment 

of three year advancements 

Artificial intelligence (AI) techniques have 

emerged as powerful tools for data-driven 

voltage stability assessment (VSA), enabling 

fast, adaptive, and scalable prediction of 

system stability margins under varying 

operating conditions[4], [5], [15], [15]. 

These methods exploit the increasing 

availability of phasor measurement unit 

(PMU) data, supervisory control and data 

acquisition (SCADA) signals, and real-time 

grid telemetry. 

4.1 Feature Engineering and Input 

Representation 

AI-based VSA models rely on well-designed 

input features that capture both steady-state 

3. Topological encodings: Adjacency 

matrices of bus–line connectivity for 

graph-based models. 

4. Time-series windows: Sequential PMU 

data for temporal learning in LSTM/CNN 

models. 

Feature vectors are typically normalized and 

augmented with topology indicators for out- 

of-topology (OOT) robustness. 

 

4.2 Model Families 

(a) Tree-Based Models: 

Ensemble methods such as XGBoost and 

Random Forests achieve high accuracy for 

classification and regression tasks with 

interpretable feature importance metrics[16]. 

(b) Sequence Models: 
Long Short-Term Memory (LSTM) and 

Convolutional Neural Networks (CNN) 

capture temporal dependencies in PMU 

streams, enabling short-term VSA (ST- 

VSA) under dynamic events[16]. 

(c) Graph Neural Networks (GNNs): 
Graph Convolutional Networks (GCN), 

Graph Attention Networks (GAT), and 

Spatio-Temporal Graph Attention Networks 

(ST-GAT) directly model the grid topology, 

improving generalization to unseen network 

configurations [7], [17], [18]. 

(d) Neuro-Fuzzy Systems: 

Adaptive Neuro-Fuzzy Inference Systems 

(ANFIS) provide interpretable, rule-based 

predictions and are effective in small-data 

scenarios[3], [18], [19]. 

4.3 Model Training and Evaluation 

Given  a  datasetD = {(xi, yi)}N   training 
and dynamic characteristics of the power involves minimizing: 
system: min 1 ∑i = 1NP(fθ(xi), yi) + λ|θ|22 2 

 
 

θ 
 

1. Steady-state features: Voltage N 

magnitudes (|V|), phase angles (θ\theta), 

2 

4.1 

active/reactive power injections (P,QP, 

Q), and line flows (Sij ) 

2. Dynamic features: Frequency, rate of 

change of frequency (ROCOF), and 

voltage rate-of-change. 

With cross-validation over different loading 

conditions, contingencies, and RES 

variability scenarios. 

Evaluation metrics include accuracy, F1- 

score, Brier score for classification, and 

mean absolute error (MAE) or root mean 

square error (RMSE) for regression. 
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4.4 Reported Advances (2022–2025) 

Table 1 AI Models for Voltage Stability Assessment 

Year Model Type Features Target Test 
System(s) 

Highlights 

2025 ST-GAT [31] Graph + 
temporal 

PMU 

VSM, 
secure/insecure 

IEEE-118, 
real grid 

Topology-aware; 
high OOT 

generalization 

2025 Regression 
Trees [33] 

Snapshots VSM under RES 
variability 

IEEE-39 Fast inference; 
robust to noise 

2024 XGBoost [28] Snapshot + 
topology 

L-index 
regression 

IEEE-118 Interpretable feature 
importance 

2024 CNN-LSTM 
Hybrid [29] 

PMU 
sequences 

ST-VSA IEEE-300 Learns spatial & 
temporal patterns 

2024 GCN [30] Graph 
structure 

Security status IEEE-118 Strong OOT 
performance 

2023 ANFIS [32] Engineered 
VSI 

Predictive VSI IEEE-57 Small-data 
effectiveness 

2023 Transfer 
Learning DL 
[34] 

PMU 

sequences 

Security 

classification 
Real grid Reduces data 

requirement 

2022 Thevenin-ML 
Hybrid [35] 

PMU + 
Zthcalc 

Online VSM IEEE-14 Combines physics & 
ML 

4.5 Hybrid AI Approaches 

Recent work emphasizes physics-informed 

AI that embeds power system equations into 

the learning process, improving 

interpretability and reducing reliance on 

large labeled datasets. Other trends include 

multi-task learning, where a single model 

jointly predicts VSM, L-index, and critical 

buses[19], and explainable AI (XAI) tools 

such as SHAP values for operator trust. 

4.6 Deployment Considerations 

AI models for VSA must be: 

1. Fastinference within milliseconds to 

meet operational timelines. 

2. Robusttolerant to PMU failures or bad 

data. 

3. Generalizableperform well under 

topology changes and new operating 

points. 

4. Explainableprovide reasoning for 

predictions to support control room 

decision-making. 

5. Metaheuristic Optimization for Voltage 

Stability Enhancement of the three years 

advancements 

Metaheuristic optimization algorithms have 

been extensively applied to preventive and 

corrective voltage stability enhancement 

problems, including Optimal Reactive 

Power Dispatch (ORPD), FACTS device 

placement/sizing[13], and Distributed 

Generation (DG) siting. 

Their main advantage lies in handling non- 

convex, multi-objective, and mixed-variable 

optimization problems that arise in large- 

scale grids. 

5.1 Algorithm Families 

1. Particle Swarm Optimization (PSO). 

Widely used for ORPD due to fast 

convergence and simple 

implementation[20]. Variants include 

Lévy-flight PSO, which enhances global 

search ability[21]. 
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2. Grey Wolf Optimizer (GWO). Effective 

for DG/FACTS placement, known for its 

exploration–exploitation balance[22]. 

3. Differential Evolution (DE). Robust for 

mixed-variable FACTS placement 

problems[21][23]. 

4. Whale Optimization Algorithm (WOA). 

Efficient in capacitor placement, handling 

discrete and continuous variables 

simultaneously[24]. 

placement, reactive set-points) as a 

candidate solution vector. 

ii. Objective Function Evaluation: 

 
F(x) = w1PP(x) + w2 VD(x) + 
w3 VSI_risk(x) + w4 Cost(x) 

5.1 
Constraint Handling: Penalty functions for 

voltage and thermal violations: 
Penalty = ∑i max (0, Vi − V max) + 

5. Multi-Objective PSO (MOPSO). 

Generates Pareto fronts for conflicting 

objectives like loss minimization, voltage 

profile improvement, and cost 

reduction[21]. 

6. Hybrid Approaches. Combine 

metaheuristics with sensitivity analysis, 

machine learning surrogates, or 

mathematical relaxations for faster 

convergence[25]. 

5.2 Generic Metaheuristic Workflow for 
Voltage Stability Enhancement 

The general metaheuristic optimization 
process can be summarized as: 

i. Problem Encoding: Represent 

decision variables  (e.g., device 

∑i max (0, Vimin− Vi) 
5.2 

Population Initialization: Randomly 

generate candidate solutions within 

operational limits. 

i. Search Process: Apply algorithm- 

specific operators (e.g., velocity 

updates in PSO, encircling prey in 

WOA). 

ii. Termination: Stop when 

convergence criteria or iteration limit 

is met. 

iii. Best Solution Selection: Identify set- 

points/placements with best trade- 

offs. 

 

5.3 Reported Advances (2022–2025) 

Table 2 Metaheuristic Algorithms for Voltage Stability Enhancement 

Year Algorithm Application Decision 
Variables 

Test 
System(s) 

Highlights 

2025 Lévy-PSO 

[40] 

ORPD Generator Q- 
setpoints, 

taps, caps 

IEEE-57, 

118 

Escapes local optima; 

faster convergence 

2025 MOPSO [44] DG + capacitor 
siting 

Locations, 
sizes 

IEEE-33 Pareto fronts for loss, 
VD, cost 

2025 Hybrid 

GWO–DE 

[45] 

STATCOM/TCSC 

siting 
Bus 

locations, 

device 
ratings 

IEEE-118 Combines exploration 

& exploitation 

2024 WOA [43] Capacitor 
placement 

Sizes, 

switching 

states 

IEEE-33, 
69 

Handles 
discrete/continuous 

2024 MGWO [41] DG/FACTS 
placement 

Discrete sites 
+ sizes 

IEEE-57 Good trade-off 
solutions 

2024 DE [42] FACTS siting & Placement IEEE-39 Robust performance 
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  sizing vector, 
capacities 

  

2023 PSO [39] ORPD Q-setpoints, 
tap positions 

IEEE-30, 
57 

Fast convergence, 
simple tuning 

2023 Hybrid ML– 
MOPSO [46] 

ORPD + VSI 
improvement 

Q-setpoints IEEE-118 Surrogate model 
speeds convergence 

2022 Sensitivity– 
PSO [47] 

STATCOM 
placement 

Bus index, 
MVAR size 

IEEE-57 Reduced search space 

5.4 Multi-Objective Optimization 

Considerations 

Voltage stability enhancement problems 

often have conflicting objectives, such as: 

i. Loss minimization vs Cost 

minimization 

ii. Voltage deviation reduction vs 

Device utilization 

iii. Stability margin maximization vs 

Reactive power reserve preservation 

Multi-objective algorithms like MOPSO, 

NSGA-II, and MOEA/D generate Pareto- 

optimal solutions, enabling operators to 

choose set-points according to preferences 

and operational constraints. 

5.5 Integration with AI 

6.1 AI vs. Metaheuristic Capabilities 

Recent work combines metaheuristics with 

AI-based predictive models to accelerate 

optimization by avoiding repeated full 

power flow calculations. Surrogate-assisted 

metaheuristics use trained models (e.g., 

XGBoost, ANN) to approximate objective 

functions, achieving up to 70% reduction in 

computation time in large-scale systems. 

6. Comparative Analysis 

This section synthesizes findings from 

Sections 4 and 5, enabling a direct 

comparison of artificial intelligence (AI) 

techniques and metaheuristic optimization 

algorithms applied to voltage stability 

assessment and enhancement between 2022 

and 2025. 

Aspect AI-Based VSA Metaheuristic Optimization 

Objective Predict voltage stability status/margin 
(classification/regression) 

Optimize control variables for 
enhanced stability 

Input Data PMU streams, SCADA data, network 
topology 

Network models, load/generation 
data, device constraints 

Output Security status, VSM, L-index, critical bus 
ranking 

Optimal set-points, device 
placement/sizing 

Speed Milliseconds inference (once trained) Iterative search (seconds–minutes) 

Adaptability Adapts to new data via retraining Adapts via re-optimization 

Explainability Varies (tree-based = high, deep learning = 
low unless XAI applied) 

Moderate (decision variables 
explicit; trade-offs visualized) 

Scalability Scales with data availability; needs 
retraining for topology shifts 

Scales with  computation; 
hybridization can reduce 

complexity 

 

6.2 Summary of AI-Based Approaches (2022–2025) 

Year Model Features Target Test 
Systems 

Accuracy / 
RMSE 

Key Benefit 

2025 ST-GAT 
[31] 

Graph + 
PMU time 

VSM, 
security 

IEEE- 
118,  real 

Acc. > 
97% 

High 
generalization 
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  series status grid  under topology 
change 

2025 Regression 
Trees [33] 

Snapshots VSM IEEE-39 RMSE < 
0.02 

Robust to noise 

2024 CNN-LSTM 
[29] 

PMU 
sequences 

ST-VSA IEEE-300 Acc. ≈ 
96% 

Captures spatial & 
temporal patterns 

2024 XGBoost 
[28] 

Snapshot + 
topology 

L-index IEEE-118 MAE < 
0.015 

Interpretable 

2024 GCN [30] Graph 
structure 

Security 
status 

IEEE-118 Acc. ≈ 
95% 

Topology-aware 
learning 

2023 ANFIS [32] Engineered 
VSI 

Predictive 
VSI 

IEEE-57 RMSE < 
0.01 

Interpretable rules 

2023 Transfer 
Learning 
[34] 

PMU 

sequences 
Security 

class 

Real grid Acc. > 

94% 

Reduces data need 

2022 Hybrid 

Thevenin- 

ML [35] 

PMU + Zth Online 

VSM 

IEEE-14 MAE < 

0.02 

Physics-informed 

accuracy 

6.3 Summary of Metaheuristic Approaches (2022–2025) 

Year Algorithm Application Decision 
Variables 

Test 
Systems 

Key Performance 

2025 Lévy-PSO 
[40] 

ORPD Q-setpoints, 
taps, caps 

IEEE-57, 
118 

Converges 20% 
faster; escapes local 

optima 

2025 MOPSO [44] DG + capacitor Locations, 
sizes 

IEEE-33 Balanced loss & VD 

2025 Hybrid GWO– 
DE [45] 

STATCOM/TCSC Bus loc., 
ratings 

IEEE- 
118 

Improved 
convergence stability 

2024 WOA [43] Capacitor 
placement 

Sizes, states IEEE-33, 
69 

Handles discrete & 
continuous 

2024 MGWO [41] DG/FACTS 

placement 
Sites + sizes IEEE-57 Competitive Pareto 

fronts 

2024 DE [42] FACTS sizing Placement, 
capacities 

IEEE-39 Strong robustness 

2023 PSO [39] ORPD Q-setpoints, 
taps 

IEEE-30, 
57 

Simple, fast 

2023 ML–MOPSO 
[46] 

ORPD + VSI Q-setpoints IEEE- 
118 

70% faster via 
surrogate 

2022 Sensitivity– 
PSO [47] 

STATCOM Bus index, 
size 

IEEE-57 Reduced search 
space 

6.4 Performance Insights 

i. AI Models excel in fast stability 

prediction, especially for online 

applications where millisecond-level 

decision-making is required[9]. 

ii. Metaheuristics are essential when optimal 

control actions need to be computed from 

scratch, especially for device placement 

and multi-objective optimization[23]. 
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iii. Hybrid AI–Metaheuristic Frameworks 

(e.g., ML-assisted MOPSO) combine 

predictive speed with optimization 

capability, reducing computation time 

without compromising solution 

quality[8]. 

 

7. Challenges and Future Research 

Despite significant advances in AI- and 

metaheuristic-based voltage  stability 

enhancement between  2022 and 2025, 

several challenges remain before widespread 

deployment in real-world systems. 

 

7.1 Topology Shift and Model 

Generalization 

AI-based VSA models can suffer 

performance degradation when grid 

topology changes due to maintenance, 

expansion, or contingencies. Graph-based 

learning and domain adaptation techniques 

[9], [25]are promising, but practical 

frameworks for online adaptation without 

full retraining are still emerging. 

 

7.2 Measurement Sparsity and PMU 

Deployment 

PMUs provide high-quality synchrophasor 

data, but their deployment is limited by cost. 

Solutions include virtual PMUs, 

compressive sensing, and active sensing 

strategies[6], [9], [11], [22] to reconstruct 

missing measurements. 

7.3 Renewable Energy Uncertainty 

Variability and forecast errors in renewable 

generation cause dynamic voltage stability 

challenges. Robust optimization, stochastic 

programming, and chance-constrained 

reinforcement learning, are key to managing 

uncertainty while maintaining operational 

security [26]. 

7.4 Explainability and Operator Trust 

For operational acceptance, AI predictions 

must be interpretable. Explainable AI (XAI) 

methods such as SHAP values for tree 

models and gradient attribution for 

GNNs[11][15], are vital to building operator 

trust. 

 

7.5 Coordinated Multi-Agent Control 

Future grids will require cooperative control 

among multiple voltage support devices 

(STATCOM, DG inverters, OLTCs) using 

multi-agent reinforcement learning 

(MARL)[25],[1]. Coordination with grid- 

forming inverter controls and adherence to 

emerging standards [1]is an open research 

area. 

 

Conclusion. 

This paper reviewed recent (2022–2025) 

developments in voltage stability assessment 

and enhancement using artificial intelligence 

(AI)  and  metaheuristic  optimization. 

AI models particularly graph-based and 

hybrid physics-informed architectures have 

achieved high accuracy and adaptability in 

predicting stability margins and identifying 

weak buses. 

Metaheuristic algorithms remain crucial for 

non-convex, multi-objective optimization 

problems such as ORPD, FACTS device 

placement, and DG siting. 

Comparative analysis revealed that: 
1. AI-based VSA offers millisecond 

inference for real-time monitoring. 

2. Metaheuristics provide robust 

optimization under complex operational 

constraints. 

3. Hybrid AI metaheuristic frameworks 

combine speed with optimization 

accuracy. 

 

Future research should focus on: 

1. Enhancing model generalization to 

topology shifts. 

2. Addressing PMU measurement sparsity 

with virtual sensing. 

3. Incorporating uncertainty management 

into optimization and RL. 
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4. Developing explainable AI frameworks 

to improve operator trust. 

5. Implementing coordinated multi-agent 

voltage control under evolving grid 

standards. 

These advances will enable sustainable and 

resilient voltage stability management in 

renewable-rich, dynamically evolving power 

systems. 

 

Reference 

[1] N. Khosravi, D. Çelik, H. Bevrani, 

and S. Echalih, ―Microgrid stability: A 

comprehensive review of challenges, trends, 

and emerging solutions,‖ Int. J. Electr. 

Power Energy Syst., vol. 170, no. May, 

2025, doi: 10.1016/j.ijepes.2025.110829. 

[2] K. Aleikish, J. Kristiansen Noland, 

and T. Oyvang, ―Synergistic Meta-Heuristic 

Adaptive Real-Time Power System 

Stabilizer (SMART-PSS),‖ IEEE Open 

Access J. Power Energy, vol. 12, no. 

January, pp. 36–45, 2025, doi: 

10.1109/OAJPE.2025.3532768. 

[3] P. Pijarski, P. Kacejko, and P. Miller, 

―Advanced Optimisation and Forecasting 

Methods in Power Engineering— 

Introduction to the Special Issue,‖ Energies, 

vol. 16, no. 6, 2023, doi: 

10.3390/en16062804. 

[4] M. Azadikhouy, ―Multi objective 

moth swarm algorithm for optimizing 

electric vehicle integration in distribution 

grids,‖ Sci. Rep., vol. 15, no. 1, pp. 1–22, 

2025, doi: 10.1038/s41598-025-10849-7. 

[5] A. S. Azad, N. Islam, N. Nabi, S. De 

Silva, and R. Sokkalingam, ―Artificial 

Intelligence Applications in Hybrid 

Renewable Energy Systems: A 

Comprehensive Review of Techniques, 

Applications, and Challenges,‖ 2025, 

[Online]. Available: 

https://ssrn.com/abstract=5292704 
[6] E. J. Okampo, N. Nwulu, and P. N. 

Bokoro, ―Optimal Placement and Operation 

of FACTS Technologies in a Cyber-Physical 

Power System: Critical Review and Future 

Outlook,‖ Sustain., vol. 14, no. 13, 2022, 

doi: 10.3390/su14137707. 

[7] P. Jiang and X. Ma, ―A hybrid 

forecasting approach applied in the electrical 

power system based on data preprocessing, 

optimization and artificial intelligence 

algorithms,‖ Appl. Math. Model., vol. 40, 

no. 23–24, pp. 10631–10649, 2016, doi: 

10.1016/j.apm.2016.08.001. 

[8] C. Barrera-Singaña, M. P. Comech, 

and H. Arcos, ―A Comprehensive Review 

on the Integration of Renewable Energy 

Through Advanced Planning and 

Optimization Techniques,‖ Energies, vol. 

18,  no.  11,  pp.  1–23,  2025,  doi: 

10.3390/en18112961. 
[9] T. Zhang and G. Strbac, ―Novel 

Artificial Intelligence Applications in 

Energy: A Systematic Review,‖ Energies, 

vol. 18, no. 14, pp. 1–51, 2025, doi: 

10.3390/en18143747. 

[10] Y. Wang and G. Xiong, 

―Metaheuristic optimization algorithms for 

multi-area economic dispatch of power 

systems: part II—a comparative study,‖ 

Artif. Intell. Rev., vol. 58, no. 5, 2025, doi: 

10.1007/s10462-025-11125-w. 

[11] A. Kumar, A. K. Dubey, I. Segovia 

Ramírez, A. Muñoz del Río, and F. P. 

García Márquez, ―Artificial Intelligence 

Techniques for the Photovoltaic System: A 

Systematic Review and Analysis for 

Evaluation and Benchmarking,‖ Arch. 

Comput. Methods Eng., vol. 31, no. 8, pp. 

4429–4453, 2024, doi: 10.1007/s11831-024- 

10125-3. 
[12] K. A. Tahir, ―A Systematic Review 

and Evolutionary Analysis of the 

Optimization Techniques and Software 

Tools in Hybrid Microgrid Systems,‖ 

Energies, vol. 18, no. 7, 2025, doi: 

10.3390/en18071770. 

[13] M. Abdel-Basset, R. Mohamed, I. M. 

Hezam, K. M. Sallam, A. M. Alshamrani, 

and I. A. Hameed, ―Artificial intelligence- 

http://www.ijmsrt.com/


Volume-3, Issue-8, August 2025 International Journal of Modern Science and Research Technology 

ISSN No- 2584-2706 

IJMSRT25AUG031                   www.ijmsrt.com 
DOI: https://doi.org/10.5281/zenodo.16941661 

178 

 

 

based optimization techniques for optimal 

reactive power dispatch problem: a 

contemporary survey, experiments, and 

analysis,‖ Artif. Intell. Rev., vol. 58, no. 1, 

2025, doi: 10.1007/s10462-024-10982-1. 

[14] M. A. E. Mohamed, S. A. Ward, M. 

F. El-Gohary, and M. A. Mohamed, ―Hybrid 

fuzzy logic–PI control with metaheuristic 

optimization for enhanced performance of 

high-penetration grid-connected PV 

systems,‖ Sci. Rep., vol. 15, no. 1, pp. 1–24, 

2025, doi: 10.1038/s41598-025-09336-w. 

[15] S. M. Sharifhosseini et al., 

―Investigating Intelligent Forecasting and 

Optimization in Electrical Power Systems: 

A Comprehensive Review of Techniques 

and Applications,‖ Energies, vol. 17, no. 21, 

2024, doi: 10.3390/en17215385. 

[16] C. Yang et al., ―Optimal Power Flow 

in Distribution Network: A Review on 

Intelligence’s Application in Hybrid Solar 

and Wind Power Plant Optimization: A 

Study of the Literature,‖ J. Adv. Res. Appl. 

Sci. Eng. Technol., vol. 50, no. 2, pp. 279– 

293, 2025, doi: 

10.37934/araset.50.2.279293. 

[21] N. Rehman, M. U. D. Mufti, and N. 

Gupta, ―Metaheuristic Method for a Wind- 

Integrated Distribution Network to Support 

Voltage Stabilisation Employing Electric 

Vehicle Loads,‖ Appl. Sci., vol. 13, no. 4, 

2023, doi: 10.3390/app13042254. 

[22] Y. Wang, Z. Wu, and D. Ni, ―Large- 

Scale Optimization among Photovoltaic and 

Concentrated Solar Power Systems: A State- 

of-the-Art Review and Algorithm Analysis,‖ 

Energies, vol. 17, no. 17, 2024, doi: 

10.3390/en17174323. 

[23] U. Mohamed Khider de Biskra, H. 

Yacine, S. Ahmed, and N. Djemai, ―الجوهىريت 

Problem Formulation and Optimization الجسائريت الديوقراطيت الشعبيت République 

Methods †,‖ Energies, vol. 16, no. 16, pp. 1– Algérienne Démocratique et Populaire العالي 

42, 2023, doi: 10.3390/en16165974. العلوي والبحث وزارة التعلين Ministère de 

[17] M. Karthikeyan, D. Manimegalai, 

and K. Rajagopal, ―Enhancing voltage 

control and regulation in smart micro-grids 

through deep learning - optimized EV 

reactive power management,‖ Energy 

Reports, vol. 13, no. January, pp. 1095– 

1107,  2025, doi: 

10.1016/j.egyr.2024.12.072. 

[18] M. Hasan et al., ―A state-of-the-art 

comparative review of load forecasting 

methods: Characteristics, perspectives, and 

applications,‖ Energy Convers. Manag. X, 

vol. 26, no. February, p. 100922, 2025, doi: 

10.1016/j.ecmx.2025.100922. 

[19] G. Dudek, P. Piotrowski, and D. 

Baczyński, ―Intelligent Forecasting and 

Optimization in Electrical Power Systems: 

Advances in Models and Applications,‖ 

Energies, vol. 16, no. 7, pp. 1–11, 2023, doi: 

10.3390/en16073024. 

[20] M. S. Mauludin, M. Khairudin, R. 

Asnawi, W. A. Mustafa, and T. S. Fauziah, 

―The   Advancement   of   Artificial 

l’enseignement supérieur et de la recherche 

scientifique Option : Réseaux Electriques 

Anes Bouhanik Devant le jury composé de : 

 عتهاج.‖بسكرة ا ي ج و ل و ى ك ث ل ا و م و ل ع ل ا ة ي ل ك 

 خيضر هدحه

[24] I. Hattabi et al., ―Enhanced power 

system stabilizer tuning using marine 

predator algorithm with comparative 

analysis and real time validation,‖ Sci. Rep., 

vol. 14, no. 1, pp. 1–30, 2024, doi: 

10.1038/s41598-024-80154-2. 

[25] A. Fawaz, I. Mougharbel, K. Al- 

Haddad, and H. Y. Kanaan, ―Energy 

Routing Protocols for Energy Internet: A 

Review on Multi-Agent Systems, 

Metaheuristics, and Artificial Intelligence 

Approaches,‖ IEEE Access, vol. 13, no. 

February, pp. 41625–41643, 2025, doi: 

10.1109/ACCESS.2025.3546620. 

[26] K. Quizhpe, P. Arévalo, D. Ochoa- 

Correa, and E. Villa-Ávila, ―Optimizing 

Microgrid Planning for Renewable 

Integration  in  Power  Systems:  A 

http://www.ijmsrt.com/


Volume-3, Issue-8, August 2025 International Journal of Modern Science and Research Technology 

ISSN No- 2584-2706 

IJMSRT25AUG031                   www.ijmsrt.com 
DOI: https://doi.org/10.5281/zenodo.16941661 

179 

 

 

Comprehensive Review,‖ Electron., vol. 13, 

no. 18, 2024, doi: 

10.3390/electronics13183620. 

http://www.ijmsrt.com/

