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Abstract 

This paper presents a study between Leela Chess 

Zero (Lc0), a neural network-based chess engine 

and elite-level human chess play. The objective of 

this research is to explore how artificial 

intelligence, reinforcement learning and neural 

network-based systems, are reshaping our 

understanding of chess. We have extracted and 

modified large datasets from public domain 

comprising over 2.7 million self-play games by 

Lc0 and 1.6 million games played by elite human 

players (rated above 2500 on Lichens platform) 

and pre-processed this data to enable robust 

statistical analyses. With the help of a systematic 

approach and Python-based data analysis, we have 

evaluated various dimensions of game play under 

different conditions. This study investigates not 

only the strengths of neural network-based 

engines in decision-making and pattern 

recognition but also highlights the blind spots and 

biases in elite human play of opening selection 

and game outcomes. Charts and visualizations 

have been shown to clearly represent key 

differences and correlations between the two types 

of play. Our findings suggest that AI engines like 

Lc0 do not just replicate human strategies but 

often uncover new approaches and deeper 

evaluations that challenge long human theories. 

The analysis shows how neural network-based 

engines expose flaws in classical human openings 

and they often suggest alternative continuations 

that were previously unexplored. Also, we discuss 

the role of tree search in enhancing prediction 

accuracy, especially in critical game phases such 

as endgames. This study aims to provide a bridge 

between human level game understanding and AI 

precision in chess, offering insights that can help 

chess professionals to enhance their play and 

rethink on traditional strategies. The results show 

how AI can be used as a powerful tool for chess 

analysis, training, and innovation. In the long 

term, this research can influence how chess is 

taught, analysed, and played, leading to a re- 

 

Evaluation of classical openings and the discovery 

of new theoretical lines. 
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I. Introduction 

A. Background 

Modern chess is growing rapidly, and it has seen 

huge improvement with the arrival of Artificial 

Intelligence [1]. Earlier we saw brute force [2], 

tree-based algorithms [3] to find out the best 

possible move in a particular chess position and 

the advantage it gives in the play. This method 

requires a lot of computation and resources as 

chess can get complicated with only the first four 

moves of the game having almost 318 billion 

ways to approach the game. In the previous 

development phases computers like Deep Blue [4] 

developed by IBM which defeated the world 

champion Garry Kasparov were a breakthrough to 

provide quality chess training and insights of the 

games to world class players. Chess engines such 

as Stockfish work by using a combination of 

algorithms and techniques to evaluate chess 

positions and find the best possible moves. It 

utilizes a search algorithm alpha-beta search to 

explore a tree of potential moves. It also employs 

a heuristic evaluation [5] function which has 

evolved from a hand-coded function to a neural 

network (NNUE) in more recent versions[6] to 

assess the value of different positions. And to this 

day we have stepped into the world of AI and 

deep learning where we are familiar with 

reinforcement learning based chess engines such 

as Alpha Zero [7] and Lc0 which utilize neural 

networks [8] to analyze and solve chess positions. 

The advantage of using reinforcement learning 

based chess engines is that they can get trained 

from the human available chess game database 

and exhibit human like play nature. Chess players 

follow strategies and opening theories [9] and are 
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taught to capitalize in the middle game and the 

center of the board. Theories like grandmasters 

prefer bishops rather than knights as they cover 

long diagonals of the board and are efficient in 

endgame strategies while some players rely on the 

forking capabilities of the knight and its game 

complications to expand the chess horizons. This 

kind of behavior can be exhibited by 

reinforcement learning based chess engines to 

better help chess players with the depth of the 

game and research on classical or modern chess 

opening ideas. 

B. Problem Statement 

In the chess world, a debate exists between how 

elite human players approach the game and how 

modern chess engines compute optimal solutions. 

Many grandmasters and elite players have 

expressed concerns that chess engines, while 

extremely powerful, do not always align with the 

theoretical frameworks and principles that humans 

rely upon. Chess engines solve problems through 

deep brute-force calculations and pattern 

recognition, rather than by following traditional 

strategic lines. This different approach has 

sparked ongoing debates in the chess community 

regarding the interpretability and value of engine- 

recommended moves. 
Top-level  human  players  structure  their  play 

around established theories, emphasizing the 

importance of control over the centre, timely piece 

development, king safety through castling, and 

positional imbalances such as bishop pair 

advantage, knight superiority in closed positions. 

These principles are supported by centuries of 

collective learning and have been passed down 

through chess literature, coaching, and historical 

analysis. For example, bishops are preferred in 

endgames because of their long diagonal covering 

capabilities, whereas knights are highly valued in 

complex middle-game positions for their forking 

abilities and unpredictability in deep games. This 

narrative forms the foundation of human chess 

learning, guiding players through the opening, 

middle game, and endgame phases. 

Chess engines often propose moves that defy 

conventional wisdom, opting for lines that may 

appear counterintuitive to human understanding. 

These moves may indeed look like objectively 

optimal, but they often lack theoretical 

justification, making it difficult for players to 

understand and evaluate their logic. Also, engines 

can overlook alternative moves that may be 

slightly less optimal in evaluation but are easier 

for humans to follow and study, thus offering 

greater long-term value. 

This underscores the potential of neural network- 

basedchess engines like Lc0, which combine 

computational strength with reinforcement 

learning from self-play to serve as a bridge 

between theory and calculation. Unlike in older 

chess engines that rely on deterministic search, 

neural network-based chess engines learn through 

experience and try to rediscover strategically 

sound patterns without being explicitly made to 

do so. As a result, they can provide position 

insights and decision trees that are not only strong 

but also theoretically meaningful, helping humans 

to expand their understanding of both classical 

and modern positions. 

The  analytical  depth  of  model  trained  from 

reinforcement learning can be used to train and 

evaluate human games, potentially enhancing the 

theoretical version of chess. By studying AI- 

generated games alongside classical games, 

players and researchers can explore new ideas of 

existing openings, discover unexplored variations, 

and develop rich endgame heuristics. The blend of 

AI enabled game precision and human-curated 

chess theory may hold the key to unlock 

undiscovered aspects of the game. 

Chess remains an unsolved problem, and its 

complexity is further amplified in alternative 

formats such as freestyle chess (also known as 

Chess960 or Fischer Random Chess), where the 

back-rank pieces are shuffled randomly. In these 

formats, traditional opening preparation becomes 

useless and even the strongest grandmasters have 

struggled to adapt to it. This shows that human 

players rely not only on real-time calculation but 

also on memorized theoretical knowledge and 

historical game references. The freestyle format 

strips players of their opening familiarity and 

challenges them to rely solely on principled 

understanding and adaptability—areas where 

neural network engines may excel due to their 

ability to evaluate unfamiliar positions without 

prior opening knowledge. 
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This study shows that working on the strengths of 

neural network-based engines, such as Lc0, can 

give a new model of learning where 

computational analysis is combined with 

theoretical exploration. This synergy can 

ultimately contribute to a more complete 

understanding of chess, pushing both human and 

machine toward discovering new dimensions of 

play and perhaps inching closer to a more solved 

or explainable model of the game. 

 

II. Related Work 

A. Lc0 Against Endgame Tablebases 

Previous studies have demonstrated that neural 

networks tend to approach perfect play as the 

training progresses, particularly when the model is 

exposed to a diverse and sufficiently large set of 

training positions [10]. The refinement of neural 

network parameters over time enables the model 

to better approximate optimal policy and value 

functions. However, the intrinsic limitations of 

neural networks in handling deep combinatorial 

decision spaces such as those encountered in 

chess necessitate the use of tree search algorithms 

to further enhance performance. 

Monte Carlo Tree Search (MCTS), as in engines 

like Alpha Zero and Lc0, plays a crucial role in 

enhancing prediction accuracy, especially in 

complex game states. Empirical evidence suggests 

that neural network error rates tend to decrease at 

decision depths where the sample density is high, 

indicating that frequent exposure to similar 

positions allows the model to generalize more 

accurately. Conversely, in rare or highly specific 

positions such as in deep endgames, the model 

alone may exhibit inaccuracies due to sparse 

training data. 

In  such  scenarios,  tree  search  significantly 
improves the quality of decision-making, even at 

relatively shallow depths. Specifically, in 

endgames, tree search facilitates a higher rate of 

perfect play, compensating for the limitations of 

the policy network by thoroughly evaluating 

variations through playouts. This corrective 

mechanism is particularly effective when the 

value head of the neural network maintains high 

accuracy,  allowing  tree  search  to  confidently 

refine move selection based on reliable 

evaluations. 

However, it is important to note that tree search 

can introduce negative impacts on overall 

prediction accuracy in cases where the value head 

error is substantial. In such situations, the tree 

may over commit to suboptimal lines based on 

flawed evaluations, leading terrors during move 

selection. Therefore, the effectiveness of tree 

search is tightly coupled with the reliability of the 

underlying neural network evaluations, 

highlighting the importance of joint optimization 

in both policy and value heads. 

B. Stockfish or Lc0 

Recent comparative studies have revealed 

nuanced differences in endgame prediction 

accuracy between Stockfish [11], a deterministic, 

rule-based engine relying on handcrafted 

evaluation functions and alpha-beta pruning, and 

Lc0, a neural-network-based engine trained via 

reinforcement learning and self-play. In simplified 

board states such as 3-piece endgames, it has been 

observed that Stockfish’s policy function 

consistently performs at a level equal to or 

superior to that of Lc0 in terms of predicting the 

perfect move [12]. This aligns with Stockfish’s 

design philosophy, which excels in calculating 

precise tactical sequences and table base lookups 

in minimal-piece scenarios. 
However, in 4-piece endgames, Lc0 demonstrates 

a clear edge. It tends to make fewer mistakes 

compared to Stockfish, particularly in positions 

that require strategic nuance rather than brute- 

force calculation. This suggests that Lc0’sdeep 

learning framework is more effective at 

generalizing positional principles, even in rare or 

sparsely encountered endgame configurations. 

One notable strength of Lc0’s is its superior 

ability to evaluate and recognize weaknesses in 

positions, a trait attributed to its learned 

representations of long-term positional imbalances 

rather than short-term tactical threats. When tree 

search is applied, both engines significantly 

enhance their performance, reducing their 

respective error rates and bringing their predictive 

accuracy closer together. The gap in performance 

narrows, highlighting the critical role of search in 

refining  engine  decisions,  especially  when 
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navigating low-piece count positions with subtle 

winning or drawing chances. 

Interestingly, there is a divergence in prediction 

specialization between the two engines. Stockfish 

demonstrates higher reliability in predicting 

winning positions, likely due to its tactical depth 

and efficient pruning mechanisms. Conversely, 

Lc0 is more adept at correctly identifying drawing 

positions, an ability that likely stems from its 

probabilistic evaluation approach and its capacity 

to model game-theoretic equality over long 

sequences. 

Another area where Lc0 shows clear superiority is 

in scenarios where the opponent's last remaining 

pawn is under threat. Hence, Lc0 commits less 

errors as compared to Stockfish engine, indicating 

a stronger edge over pawn endgames. This further 

supports the view that Leela’s strength lies not 

only in its learned policy but also in its intuitive, 

human-like assessment of position quality, even 

without explicit table base access. 

III. Methodology 
We have followed certain steps to neatly extract 
and clean the dataset. All chess games were in 
PGN (Portable Game Notation), a format to save 
chess data. We converted this data into csv file 
format for better interpretation and further 
analysis. Then a simple yet effective data plotting 
was done to visualize the outcomes and understand 
the results. 

A. Dataset 

For this study we have used two datasets which 

were compiled to facilitate a comprehensive 

comparison between artificial intelligence-driven 

chess play and human expert-level performance. 

The first dataset comprises 2,756,982 self-play 

games generated by Lc0, sourced from an openly 

available Kaggle repository [13]. These games 

were played under various time controls and 

employed a policy temperature of 2.25, a 

parameter used to increase move diversity during 

training. All games were trained using the CUDA- 

fp16 backend, optimizing computational 

efficiency on GPU hardware. The dataset reflects 

a broad range of positions and strategic themes 

encountered during the self-play training cycle of 

Lc0, making it a rich resource for understanding 

AI learning behavior in chess. 

 

The second dataset was downloaded from the 

Lichess.org platform [14], a widely used, open- 

source online chess server. This collection 

includes 1,645,041 games played by elite human 

players, specifically those rated 2500 and above, 

against opponents rated 2300 and above. To 

maintain high analytical quality, bullet and speed 

games were excluded, focusing the dataset on 

rapid, classical, and blitz formats where deeper 

strategic planning is more observable. The 

Lichess data offers a robust representation of 

expert-level human play and serves as a real- 

world benchmark for comparison with AI- 

generated games. 
Both datasets are provided in Portable Game 

Notation (PGN) format and include a standardized 

set of metadata fields, such as Event, Site, Date, 

Round, White Player, Black Player, Result, ECO 

Code, Opening Name, Variation, Game Duration, 

Game Start and End Times, Play Count, and Time 

Control. These structured headers facilitate 

detailed filtering and parsing, enabling 

comparative analyses on multiple axes including 

opening theory, time management, game outcome 

trends, and positional depth. 

B. Data Conversion 

We have utilized python-chess library [15] to 

extract relevant headers for our data and pandas 

library to convert that into data frames. The data 

was then saved in CSV file. For Lc0 games a total 

of 15 PGN files were used which contains self- 

played games in different time controls. They 

were converted into CSV and then compiled 

together to finally create a large file of games. The 

same was repeated for Lichess Elite Database 

games which contained monthly games of players. 

C. Exploratory Data Analysis 

The game distribution of Lc0 shows that we have a 
highly balanced data containing almost equal 
amounts of won, lost and drawn games. 
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Fig. 1. Lc0 game distribution shows 36.5% white 

wins, 33.4% black wins and 30.1% draws 

shocasing highly balanced dataset. 

The below table shows the most played openings 
by Lc0 and provides us an idea that how much the 
chess engine loves to play the Petrov opening. 

 
TABLE I. CHESS OPENING DISTRIBUTION 
(MOST PLAYED) 

 

Opening Name No. of Games Played 

Petrov 700195 

Queen’s Gambit 
Declined 

657063 

Queen’s Pawn Game 534611 

Queen’s Gambit 
Accepted 

512790 

Queen’s Gambit 
Accepted 4.e3 

63235 

 

The net performance score of the dataset also tells 
the reason behind why these openings are popular. 
It is seen that Leela has a significant edge in 
converting the games towards a decisive ending. 
Net performance score is calculated by subtracting 
total losses from total wins showing the net win 
result. 

The below graph shows how well Lc0 performs 
with the top – 5 most played openings. 

 

Fig. 2. Net Performance Score 

Queen’s Pawn Game performed the best with a 
massive net score of 35,731, meaning it led to 
many more wins than losses suggesting it's 
extremely effective. Queen’s Gambit Accepted is 
second, with a strong net score of 23,862showing 
that accepting the gambit was also quite 
successful. Petrov Defense comes third with a net 
score of 10,068 which is still solid but 
significantly lower than the top two. QGA, 4.e3 (a 
variation of Queen’s Gambit Accepted) and 
Queen’s Gambit Declined are much lower, with 
net scores of 3,564 and 2,456, respectively. They 
still show a positive trend (more wins than losses), 
but not nearly as dominant. 

The below table shows the least played openings 
by Lc0 which tells us Leela is not much interested 
in exploring these openings. 

 
TABLE II. CHESS OPENING DISTRIBUTION 

(LEAST PLAYED) 

Opening Name No. of Games Played 

Queen’s Bishop Game 190 

Bogo Indian Defense 86 

Sicilian 77 

Catalan 15 

Giuoco Pianno 4 
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The win rate does not tell much about the games 
as we have a highly balanced dataset therefore the 
chess engine does not bends towards a particular 
opening in terms of win rate. But we have 
calculated the net performance score which 
provides some estimated idea of which opening 
and variation works well with Leela. 

 
TABLE III. NET PERFORMANCE SCORE OF 

OPENING AND VARIATION (TOP – 5) 
 

Opening Variation 

Name 

Net Score (Wins – 

Losses) 

Queen’s Pawn Game 34905 

Queen’s Gambit 
Accepted, Alekhine 

Defence 

11832 

Petrov, modern 
(Steinitz) attack 

10070 

Queen’s Gambit 
Accepted 

10033 

Slav Defence 1985 

 

The above table shows how well Leela performs 
with these openings. Elite players can study these 
openings in order to solidify their middle game 
strategies. 

IV. Result 

Leela vs Humans 
 

Fig. 3. Top variations where leela outperforms 

humans 

Leela consistently scores higher average game 
results and human scores are notably lower. 
Humans can study how Leela plays these 
variations,  especially  d50  (Queen's  Gambit 

Declined) and c88 (Ruy Lopez, Closed) and 
compare move-by-move ideas and plans. 

 

Fig. 4. Win rate comparision of Lc0 and Elite 

Human Chess Dataset 

Again in openings like C80 (Ruy Lopez), D50, 
A04 Leela’s win rate is much higher. Players can 
work on endgame conversion, attack coordination, 
and tactical awareness in these ECO lines where 
humans are missing chances. 

 

Fig. 5. ECO codes where Lc0 avoids draws more 

than elite players. 

Leela has a lower draw rate than elite humans in 
many positions (e.g., c67, e01), showing that it 
pushes for decisive results even in commonly 
drawish openings. In e01 (Catalan Closed Game), 
Leela avoids draws better than elite players. This 
shows that humans can push for imbalanced 
positions and delay simplifications further going in 
depth of the game to find a solution. 

 

V. Discussion 

A. Limitations 

While this study provides a valuable analytical 

comparison between the game play of Lc0 and 

elite human players on Lichess, it is important to 

recognize the inherent limitations in both the 
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dataset and the scope of analysis, which frame the 

boundaries of the insights presented. 

The Lichess dataset, although restricted to high- 

level games between players rated 2500+ and 

2300+, does not include individual player ratings, 

titles, or detailed metadata. As a result, the 

analysis cannot account for player-specific factors 

such as form, style, or experience, nor can it 

differentiate between titled players like 

Grandmasters (GMs) and International Masters 

(IMs). The absence of these variables limits the 

ability to perform player-level stratification or 

assess variability in human decision-making based 

on rank or rating gap. 
This study primarily focuses on openings and 

their variations, with statistical analysis centered 

on game initiation trends rather than move-by- 

move accuracy or game phase-specific 

evaluations. While this provides a strong 

foundation for understanding opening preferences 

and deviations, the research does not engage 

deeply with positional quality assessment or 

middle-game complexity. Tactical motifs, 

positional imbalances, and material sacrifices 

which often define human stylistic play are not 

quantitatively assessed in this work. 

The study does not utilize evaluation engines like 

Stockfish or neural evaluators to classify move 

quality (e.g., best move, inaccuracy, blunder), nor 

does it assess how accurately players convert 

advantages or defend inferior positions. This 

restricts the analysis to aggregate patterns and 

results, rather than providing a granular picture of 

decision-making quality. 

In terms of game phase coverage, endgames are 

only addressed at a high level, without leveraging 

endgame table bases or conducting exhaustive 

case-based reviews of theoretically drawn or won 

positions. Middle game statistics are not 

considered, and the rich tactical and strategic 

interplay that often occurs in this phase remains 

outside the scope of this study. 

Time control data was not included in the 

analytical modeling. Although the dataset avoids 

bullet and hyper-speed games, a detailed analysis 

of time usage behavior (e.g., time spent per move 

or per phase) was not conducted, which may 

affect comparisons in practical decision-making 

scenarios. 

The study takes a broad, statistically oriented 

approach to comparing Lc0 and elite human play, 

particularly in the domain of openings and game 

outcomes. However, due to the limitations in 

available data and analytical depth, the study 

refrains from drawing conclusions about in-game 

tactical depth, player-specific behaviors, or time- 

based decision efficiency. These limitations 

underscore the need for further work that can 

explore the game at a more detailed and nuanced 

level. 

B. Future Directions 

While this study establishes a foundational 

comparison between Lc0 and elite human players 

on Lichess, it also opens the door to numerous 

promising avenues for extended research and 

more granular analysis. These directions aim to 

deepen our understanding of neural network- 

driven chess engines in relation to human 

cognition, decision-making, and theoretical 

frameworks. 

Current analysis primarily focuses on game 

outcomes and aggregate behavior, but contextual 

player-level information can provide a much 

richer perspective. Future studies should integrate 

player ratings, titles (e.g., GM, IM, FM), and even 

performance trends or historical form from the 

Lichess dataset. This would enable performance 

stratification across different skill levels and help 

in understanding how neural engines compare to 

human play at varying tiers of expertise. On the 

engine side, analyzing Lc0’s behavior across 

multiple training checkpoints can reveal how its 

strategic understanding matures over time, 

potentially offering insights into how 

reinforcement learning systems modify their 

opening strategies, middle game and endgame. 
While outcome-based metrics and opening trends 
offer a macro-level comparison, a micro-level 

evaluation of individual move quality would allow 

a more detailed contrast between Leela and 

human decision-making. Utilizing Stockfish’s 

“best move” annotations, each move can be 

categorized into classes such as brilliant, best, 

excellent, inaccurate, mistake, or blunder. This 

analysis would reveal error profiles, positional 

tendencies, and the relative risk tolerance of each 

player  type.  Such  fine-grained  assessment  is 
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critical for mapping the cognitive footprint of 

each move, exposing how humans and AI diverge 

in calculation, intuition, and evaluation. 

Though this study touches on endgame 

performance, a more exhaustive analysis using 7- 

piece table bases could determine the optimality 

of endgame conversion and defense. Evaluating 

how often human players and Lc0 deviate from 

table base-perfect play can help quantify practical 

versus theoretical proficiency. Moreover, such 

analysis could be extended to imbalanced material 

scenarios, such as rook vs. bishop and pawn, or 

queen vs. two rooks, where technique, 

understanding of drawing mechanisms, and 

patience are paramount. 

Future work can use positional evaluation models, 

such as those derived from neural networks or 

expert annotations, to assess common motifs (e.g., 

outposts, pawn breaks, king safety) and tactical 

density. By comparing how Leela and elite 

humans approach these nuanced positions, 

researchers can uncover stylistic signatures such 

as whether Leela prefers simplification or 

complexity, or how often it sacrifices material for 

long-term positional gain. 

When timestamps are available, future studies 

could explore how much time players and Leela 

spend per move, especially in critical positions. 

This can offer insight into efficiency, confidence, 

and complexity recognition, and might be 

especially useful in developing training 

methodologies for humans, such as prioritizing 

time usage in complex positions and simplifying 

when under time pressure. 

A compelling reverse-engineering approach 

would involve training a neural network solely on 

high-level human games and then comparing its 

move choices and style to Lc0. This could answer 

pivotal questions such as: Which human heuristics 

persist in AI-trained on human data? How does it 

differ from reinforcement-learned engines? This 

approach could uncover latent patterns of human 

strategy, highlight strengths and blind spots, and 

allow the development of hybrid models that 

combine the interpretability of human reasoning 

with the computational power of AI. 

While this paper focuses on Lc0, the chess AI 

ecosystem includes other influential engines like 

Stockfish, Komodo, and AlphaZero. A broader 

comparative study that includes these engines 

would provide a multi-dimensional view of AI 

behavior and strategic preferences. Each engine 

employs distinct architecture and search 

methodologies (e.g., NNUE in Stockfish, 

reinforcement learning in Alpha Zero), and 

comparing them can yield valuable insights into 

which approaches are most effective in various 

game phases and how they can be leveraged in 

training and pedagogy. 

By pursuing these research directions, scholars 

and chess professionals alike can deepen their 

understanding of AI-human dynamics in chess, 

refine educational tools, and perhaps push the 

boundaries of both artificial and human strategy. 

This approach not only promises to enrich 

theoretical chess knowledge, but also holds 

potential for creating more interpretable, 

cooperative AI systems that align more closely 

with human thought processes. 
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