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Abstract 

Background 

Supply chains are integral to modern 

business operations, ensuring the seamless 

flow of goods and services globally. 

However, supply chain disruptions— 

unforeseen events interrupting this flow— 

pose significant threats to operational 

efficiency and economic stability. These 

disruptions can stem from natural 

disasters, geopolitical tensions, supplier 

failures, and sudden shifts in consumer 

demand. In 2021 alone, such disruptions 

incurred an estimated cost of four trillion 

dollars worldwide, highlighting the critical 

need for effective management strategies. 

 

Method and Result 

Utilizing a comprehensive dataset 

comprising 180,520 structured supply 

chain transactions and 469,978 

unstructured user access logs, this study 

employs machine learning algorithms— 

including Random Forests, Support Vector 

Machines (SVM), and XGBoost 

Regressors—to identify key predictors of 

supply chain disruptions and forecast their 

impacts. The analysis involves extensive 

feature engineering to enrich the dataset 

and employs performance metrics such as 

Mean Absolute Error (MAE) and R² Score 

to evaluate model effectiveness. 
The    XGBoost    Regressor   demonstrated 

superior performance, achieving a Mean 

Absolute Error of 1.058 and an R² Score of 

0.063, indicating its effectiveness in 

predicting shipping delays. Feature 

importance analysis using SHAP revealed 

and "Days for Shipment (Scheduled)" 

were pivotal in forecasting disruptions. 

These  models exhibited substantial 

predictive accuracy, underscoring their 

ability to identify critical  disruption 

patterns. 

 
Introduction 

Predictive Models and Advanced 

Technologies Mitigating Supply Chain 

Disruptions in the Retail and Healthcare 

Industry 

In modern business, supply chains serve as 

the lifeblood of global commerce, ensuring 

the seamless flow of goods and services 

across borders. The efficiency and 

resilience of these supply chains are 

paramount, particularly in the retail and 

healthcare industries, where timely 

deliveries and the availability of critical 

supplies can significantly impact both 

customer satisfaction and patient care. 

However, supply chain disruptions— 

unforeseen events interrupting the normal 

flow of goods and materials—substantially 

threaten operational efficiency and 

economic stability. These disruptions can 

arise from many factors, including natural 

disasters, geopolitical tensions, supplier 

failures, and sudden shifts in consumer 

demand. Recent data indicates that in 2021 

alone, supply chain disruptions cost 

businesses an estimated $4 trillion 

globally, underscoring the urgent need for 

effective management strategies 

(Christopher & Peck, 2004; Tang, 2006). 
Despite     significant     advancements     in 

predictive     analytics     and     technology 
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persist within the current body of research. 

Numerous studies have predominantly 

focused on theoretical models and 

simulations rather than empirical 

validation in real-world settings, thereby 

limiting the practical applicability of these 

technologies (Alkhudary et al., 2022; 

Queiroz et al., 2020). This emphasis on 

theory over practice means that while 

models may demonstrate potential in 

controlled environments, their 

effectiveness in dynamic, real-world 

supply chains remains uncertain. 
This study aims to bridge this gap by 

exploring how predictive models and 

advanced technologies can effectively 

analyze and mitigate supply chain 

disruptions across various industries, 

focusing on retail. This research aims to 

provide a robust technique for mitigating 

the supply chain risk management 

framework by leveraging data-driven 

decision-making and advanced 

technological solutions. It focuses on 

developing and validating these models 

using comprehensive datasets. The 

objective is to enhance businesses' ability 

to anticipate and respond to disruptions, 

thereby minimizing their impact and 

ensuring the smooth functioning of supply 

chain operations. 
This study contributes to the existing body 

of knowledge by offering practical insights 

into the applications of predictive analytics 

and advanced technologies in supply chain 

management. Through a combination of 

quantitative analysis, real-time data 

integration, and simulation techniques, this 

research demonstrates the potential of 

these tools in transforming supply chain 

risk management and driving operational 

excellence in the face of uncertainty. By 

empirically validating machine learning 

models in real-world scenarios, this study 

advances academic understanding and 

provides actionable strategies for industry 

practitioners aiming to enhance supply 

chain resilience and efficiency. 

The Pervasive Impact of Transportation 

Disruptions 

Transportation disruptions significantly 

impact supply chain operations, causing 

delays and inefficiencies across various 

industries. Davoudpour et al. (2022) 

investigate the factors causing 

transportation disruptions and their impact 

on the retail supply chain. They highlight 

that transportation is crucial in ensuring 

timely deliveries, with delays leading to 

ripple effects on inventory levels and 

customer satisfaction. Similarly, Tang and 

Musa (2022) identify key disruption 

factors such as port congestion and labor 

shortages, emphasizing the need for 

strategic planning and investment in 

advanced logistics technologies to mitigate 

these disruptions. This is critical because 

supply chains must address these 

transportation challenges to maintain 

operational efficiency. The findings from 

both studies underscore the importance of 

robust logistics strategies and real-time 

tracking systems to combat transportation 

disruptions effectively, ensuring 

continuous flow and availability of 

products (Davoudpour et al., 2022; Tang 

& Musa, 2022). 
 

Global Scope of the Problem 

Transportation disruptions affect supply 

chains   worldwide,  impacting  multiple 

industries, including healthcare and retail. 

Koc and Wei (2022) explore the specific 

challenges healthcare supply chains face 

due  to   transportation  disruptions, 

highlighting the critical nature of timely 

deliveries of medical supplies.  They 

emphasize the severe consequences of 

delays, which can compromise patient 

care. Similarly, Wang  et al.  (2022) 

examine the resilience of retail supply 

networks  under  various  disruption 

scenarios, particularly for fresh products. 

Their research highlights the importance of 

designing supply chains that can withstand 

these disruptions to ensure the continuous 

supply of fresh products. This global issue 
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as demonstrated by these studies. The 

international scope and cross-industry 

impact of transportation disruptions 

necessitate a comprehensive approach to 

mitigate these challenges and maintain 

supply chain resilience, making it essential 

for businesses to adopt innovative 

solutions to ensure supply chain continuity 

(Koc & Wei, 2022; Wang et al., 2022). 

 
Advanced Solutions to Disruptions 

In the United States, transportation 

disruptions significantly affect supply 

chain efficiency, particularly in the 

healthcare and retail sectors. Alkhudary, 

Queiroz, and Féniès (2022) examine the 

use of advanced technology to mitigate 

transportation disruptions in healthcare 

supply chains. Their study discusses how 

blockchain can enhance transparency, 

traceability, and coordination among 

supply chain partners, thereby reducing the 

impact of disruptions. The findings 

indicate that blockchain implementation 

can significantly improve the reliability 

and efficiency of healthcare logistics. 

Meanwhile, in the retail sector, similar 

issues are addressed by Tang and Musa 

(2022), who recommend strategic planning 

and investment in advanced logistics 

technologies to mitigate these disruptions. 

The impact of these disruptions on the 

United States is significant, necessitating 

the adoption of innovative technologies 

and strategic planning to maintain supply 

chain efficiency and reliability (Alkhudary 

et al., 2022; Tang & Musa, 2022). 
 

Minor Solutions to Address Disruptions 

Implementing  predictive analytics  and 

robotics can offer minor yet practical 

solutions  to  mitigate  transportation 

disruptions. Shmueli and Koppius (2011) 

provide a  comprehensive  review  of 

predictive analytics in information systems 

research, discussing various statistical and 

machine learning techniques used for 

predictive   modeling. Their study 

highlights the importance of predictive 

analytics in improving decision-making 

processes and managing supply chain 

risks. Predictive analytics can help forecast 

potential disruptions and allow businesses 

to take proactive measures. 

Bonet et al. (2011) explore the applications 

of robotics and automation in supply chain 

management, suggesting that integrating 

robotic systems can enhance supply chain 

efficiency, accuracy, and reliability. These 

technologies—predictive analytics and 

robotics—offer practical solutions to 

mitigate the impact of transportation 

disruptions, enhancing overall supply 

chain resilience and providing businesses 

with tools to maintain operational 

continuity despite challenges (Shmueli & 

Koppius, 2011; Bonet et al., 2011). 

 

Overarching Solutions for Enhanced 

Resilience 

Advanced technologies like IoT, 

blockchain, and Industry 4.0 offer 

comprehensive solutions to enhance 

supply chain resilience and mitigate 

transportation disruptions. Ivanov, Dolgui, 

and Sokolov (2019) explore the impact of 

digital technology and Industry 4.0 on 

supply chain risk analytics and the ripple 

effect. They discuss how IoT, blockchain, 

and advanced analytics can enhance the 

identification and management of supply 

chain risks. These technologies provide 

real-time data and enable more adaptive 

supply chain operations. 
Queiroz    et    al.    (2020)    conducted    a 

systematic review of blockchain 

integration in supply chain management, 

suggesting that blockchain can 

significantly enhance supply chain 

efficiency and resilience by enabling real- 

time data sharing and reducing fraud. 

Integrating advanced technologies like 

IoT, blockchain, and Industry 4.0 into 

supply chains can significantly improve 

their resilience and efficiency, offering a 

robust solution to mitigate transportation 

disruptions. The combined use of these 

technologies ensures a more reliable and 

responsive supply chain capable of 

adapting    to    and    overcoming    various 
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challenges (Ivanov et al., 2019; Queiroz et 

al., 2020). 

 
Addressing Research Gaps: A Strategy 

for Improving Supply Chain Resilience 

While the existing literature extensively 

examines the impact of transportation 

disruptions  and explores  various 

technological solutions to mitigate them, 

several critical limitations and gaps remain 

unaddressed. A predominant focus of 

many studies lies in theoretical models and 

simulations, with insufficient empirical 

validation in  real-world settings. For 

instance, although blockchain technology 

is frequently lauded for enhancing supply 

chain transparency  and  efficiency, 

practical implementations and tangible 

outcomes are seldom thoroughly examined 

(Alkhudary et al., 2022; Queiroz et al., 

2020). 

Similarly, predictive analytics and robotics 

are recognized for their potential in 

theoretical applications, yet comprehensive 

case studies demonstrating their practical 

impact on supply chain resilience are 

scarce (Shmueli & Koppius, 2011; Bonet 

et al., 2011). Furthermore, much of the 

current research concentrates on specific 

industries or geographic regions, 

neglecting the broader applicability of 

these technologies across diverse supply 

chain contexts. The variability in 

infrastructure, regulatory environments, 

and market dynamics across different 

regions and industries necessitates a more 

nuanced understanding of how these 

technologies can be tailored to meet 

specific needs effectively (Tang & Musa, 

2022; Koc & Wei, 2022). 
To address these gaps, this study proposes 

developing and validating predictive 

models using publicly available data 

sources. By integrating advanced 

technologies such as machine learning and 

big data analytics, the project aims to 

enhance the accuracy and responsiveness 

of predictive models, ensuring their 

applicability across various sectors. This 

research will empirically test the models' 

effectiveness in mitigating supply chain 

disruptions and improving operational 

resilience. Through this comprehensive 

approach, the study seeks to provide 

actionable insights and practical strategies 

for businesses to anticipate and respond to 

supply chain disruptions, thereby 

enhancing their resilience and operational 

efficiency. 

 
Research Questions 

RQ1: How can predictive models and 

advanced technologies identify and reduce 

supply chain disruptions in the retail sector 

based on historical and real-time data 

analysis? 

RQ2: What are the success rates of 

predictive models and advanced 

technologies in mitigating supply chain 

disruptions, as measured by improvements 

in delivery times, inventory levels, and 

cost savings in real-world scenarios? 

 

Methods 

Research Data 

The data collection process for this 

research was meticulously designed to 

acquire comprehensive and relevant 

information essential for analyzing supply 

chain disruptions in the retail industry. 

This study utilized a multifaceted 

approach, integrating historical records, 

publicly available datasets, case studies, 

and simulated scenarios to construct a 

robust and diverse dataset. 

Historical data formed the foundation of 

this research, sourced from global supply 

chain records maintained by businesses 

and industry databases. This data included 

a wide array of information, such as 

records of past disruptions, their dates, 

durations, and underlying causes. 

Operational details, including delivery 

times, inventory levels, and production 

rates, were meticulously documented 

alongside financial metrics like cost 

implications, revenue effects, and profit 

margins. The richness of this historical 

data was crucial for identifying patterns 

and correlations among different types of 
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disruptions and their impacts on supply 

chain performance. 

To ensure the reliability and 

comprehensiveness of the historical data, 

several reputable databases and platforms 

were utilized. The World Bank provided 

extensive global development statistics 

covering economic, social, and logistical 

factors relevant to supply chain disruptions 

(World Bank, 2024). Additionally, data 

from Mendeley and Kaggle, a prominent 

platform within the data science 

community, offered various datasets that 

included historical supply chain 

disruptions and their operational and 

financial repercussions (Kaggle, 2024). 

The selection criteria for these sources 

prioritized data completeness, relevance to 

supply chain disruptions, and the 

availability of specific operational and 

financial metrics. 
Recognizing the challenges of obtaining 

real-time data from supply chain 

management systems (CMS), the research 

incorporated alternative data sources to 

support its objectives. Publicly available 

datasets, while not real-time, provided 

valuable insights relevant to the study. 

Government agencies, such as the U.S. 

government’s data portal (Data.gov), 

offered various anonymized or aggregated 

supply chain data related to specific 

industries. Furthermore, research 

institutions and universities contributed 

access to datasets on supply chain 

disruptions and logistics performance 

through platforms like OpenML, which 

hosts numerous datasets from academic 

and research communities. These sources 

were instrumental in thoroughly analyzing 

supply chain dynamics and disruptions. 
The integrity and quality of the data were 

maintained through rigorous preprocessing 

steps, including data cleaning, 

normalization, and consistency checks. 

This involved handling missing values by 

removing columns with excessive missing 

data, imputing missing values in critical 

fields, and ensuring that categorical 

variables    were    appropriately    encoded. 

Feature 

engineeringtechniqueswereemployedtocrea 

tenewvariablesthatcapturedtime- 

basedtrends and interactions between key 

metrics, thereby enhancing the predictive 

power of the models. 

 
Data Preprocessing and Feature 

Engineering 

Data preprocessing was a critical step to 

ensure the reliability and accuracy of the 

analysis. The initial dataset comprised 

180,519 records with 29 columns, 

encompassing both structured and 

unstructured data. The preprocessing 

began with a thorough examination of 

missing values. The 'Product Description' 

column was entirely devoid of data and 

was subsequently dropped from the 

analysis. The 'Order Zipcode' exhibited a 

high percentage of missing values 

(86.24%) and was also removed to prevent 

skewing the results. For columns with 

partial missing data, such as 'Customer 

Lname' with 8 missing entries, imputation 

strategies were employed—filling missing 

values with 'Unknown' to maintain dataset 

integrity without introducing significant 

bias. 
Categorical   variables   were   transformed 

using one-hot encoding to facilitate their 

inclusion in machine learning models. 

Specifically, the 'Order Region' and 'Order 

State' columns were one-hot encoded, and 

the resulting datasets were aligned to 

ensure consistency between training and 

testing sets. This process eliminated any 

non-numeric columns, ensuring that all 

features were suitable for model training. 

Feature engineering further enhanced the 

dataset by creating new variables that 

captured temporal dynamics and 

interactions between key metrics. Time- 

based features such as 'Shipping_Year,' 

'Shipping_Month,' 'Shipping_Day,' and 

'Shipping_Weekday' were extracted from 

the 'shipping date (DateOrders)' column 

using datetime operations. Additionally, an 

interaction term between 'Benefit per 

order' and 'Sales per customer' was created 
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to explore the combined effect of these 

variables on supply chain performance. 

These engineered features were 

instrumental in improving the predictive 

capabilities of the models by providing 

deeper insights into the underlying data 

patterns. 

Numerical features were normalized using 

Min-Max Scaling to ensure that all 

variables contributed equally to the model 

training process. This scaling was applied 

uniformly to training and testing datasets 

to maintain consistency and prevent data 

leakage. 

 

Data Splitting 

To accurately evaluate the predictive 

models' performance, the dataset was split 

into training and testing subsets. This was 

done separately for each target variable— 

'Days for shipping (real)' and 'Benefit per 

order'—to ensure that the models were 

trained and tested appropriately for each 

specific prediction task. An 80-20 split 

was employed, with 144,415 records 

allocated to the training set and 36,104 to 

the testing set for both target variables. 

This partitioning facilitated robust model 

training while reserving substantial data 

for unbiased performance evaluation. 

 

Model Building and Training 

This research's primary machine learning 

algorithm was the XGBoost Regressor, 

known for its efficiency and performance 

in handling structured data. The model was 

initialized with the following parameters: 

100 estimators, a learning rate of 0.1, a 

maximum depth of 6, and a random state 

set to 42 to ensure reproducibility. The 

objective function was specified as 'reg' to 

optimize for regression tasks. 

The XGBoost model was trained on the 

preprocessed and scaled training data for 

predicting 'Days for shipping (real).' Post- 

training, the model was evaluated on the 

testing set to assess its predictive accuracy 

and reliability. Key evaluation metrics 

included Mean Absolute Error (MAE), 

Mean Squared Error (MSE), Root Mean 

Squared Error (RMSE), and the R² Score, 

providing a comprehensive view of the 

model's performance. 

 
Model Evaluation 

Model evaluation was conducted using 

both cross-validation and residual analysis 

to ensure the robustness and 

generalizability of the predictive models. 

A 5-fold cross-validation strategy was 

implemented using KFold from scikit- 

learn, which involved splitting the training 

data into five subsets, training the model 

on four subsets, and validating it on the 

remaining subset. This process was 

repeated five times to obtain an average 

performance metric, thereby mitigating the 

risk of overfitting and ensuring that the 

model performed consistently across 

different data splits. 
The evaluation metrics yielded by cross- 

validation were as follows: 

Mean Absolute Error (MAE): 0.4201 ± 

0.0011 

Mean Squared Error (MSE): 0.3583 ± 

0.0031 

These metrics indicated that the XGBoost 

Regressor achieved a high level of 

accuracy in predicting 'Days for shipping 

(real),' with low error rates and consistent 

performance across different data splits. 

Residual analysis was performed to 

identify any patterns or biases in the 

model’s errors. The residuals, calculated as 

the difference between the actual and 

predicted values, were plotted to assess 

their distribution. The Shapiro-Wilk Test 

for normality of residuals yielded a 

statistic of 0.8220 with a p-value nearing 

zero, indicating that the residuals did not 

follow a normal distribution. This result 

suggested that while the model was robust, 

there were areas for further refinement, 

particularly in addressing any non-linear 

patterns in the residuals that could enhance 

predictive performance. 

 

Model Interpretation and Validation 

To interpret the model's predictions and 

understand the influence of various 
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features, SHAP (SHapley Additive 

exPlanations) was employed. The SHAP 

Tree Explainer was initialized for the 

trained XGBoost model, and SHAP values 

were computed for the test set. The SHAP 

summary plot visually represented feature 

importance, highlighting the most 

influential variables in the model's 

predictions. Key features such as 

'Delivery,' 'Days for Shipment 

(Scheduled),' and 'Delivery Status' 

emerged as pivotal predictors, 

underscoring their significant roles in 

determining shipping times. 
Additionally, a force plot was generated 

for a selected instance to explain 

individual predictions, illustrating how 

specific feature values contributed to the 

model's output. This interpretability was 

crucial for validating the model's decision- 

making process and ensuring it aligned 

with domain knowledge and practical 

expectations. 

 

Model Validation and Robustness 

Checks 

Cross-validation scores were analyzed to 

ensure consistent performance across 

different data subsets, further validating 

the model's robustness. The cross- 

validated MAE and MSE indicated that the 

model maintained low error rates, 

reinforcing its reliability in predicting 

supply chain disruptions. 

Residual analysis revealed that the 

residuals did not follow a normal 

distribution, as evidenced by the Shapiro- 

Wilk Test. While this indicated robust 

model performance, it also highlighted 

potential areas for improvement in 

addressing non-linear error patterns. 

Future work could explore advanced 

techniques such as ensemble methods or 

deep learning architectures to enhance 

model accuracy and reliability further. 

 

Variables 

This study comprehensively analyzes the 

variables influencing supply chain 

disruptions, distinctly categorizing them 

into independent and dependent variables 

to align with the research objectives. By 

precisely measuring and classifying these 

variables, the study aims to provide 

meaningful insights into the nature and 

impact of disruptions within the retail 

industry's supply chains. Careful 

delineation ensures that each variable 

contributes effectively to developing 

robust predictive models. 

The independent variables encompass 

various factors contributing to supply 

chain disruptions, operational 

performance, and financial outcomes. 

Disruption types are classified based on 

historical data and industry reports, 

including logistical failures like 

transportation delays and warehousing 

inefficiencies, demand surges, supplier 

issues, natural disasters, and geopolitical 

events. These classifications provide a 

foundational framework for understanding 

the sources of disruptions and their 

impacts. 
Operational   metrics,    as    a    subset    of 

independent variables, measure supply 

chain performance. Key metrics include 

delivery times, measured in days, 

reflecting the duration between order 

placement and completion. Shorter times 

improve customer satisfaction and reduce 

inventory costs. Additional factors include 

customs clearance, weather conditions, and 

transportation infrastructure efficiency. 

Inventory levels, quantified across 

different stages, help identify stock 

availability and bottlenecks. 

Financial metrics capture the economic 

impacts of disruptions. Revenue impacts 

are measured by reductions in sales due to 

disruptions, like delays leading to lost 

opportunities. Cost implications include 

expenses to mitigate disruptions, such as 

expedited shipping fees, increased labor, 

and penalties. Quantifying these metrics 

helps businesses understand economic 

impacts and make decisions to enhance 

resilience. 

The study focuses on two primary 

dependent variables: Days for Shipping 
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(Real) and Benefit per Order. Days for 

Shipping (Real) measures shipping time, 

indicating operational downtime and 

effectiveness in minimizing delays. 

Benefit per Order, as a financial indicator, 

measures economic benefits derived per 

order, capturing profitability influenced by 

sales per customer and operational 

efficiencies. 

Evaluation metrics assess the predictive 

models' accuracy and efficiency. Mean 

Absolute Error (MAE), Mean Squared 

Error (MSE), and Root Mean Squared 

Error (RMSE) measure prediction errors, 

while the R² Score reflects the model's 

explanatory power. Precision, Recall, and 

F1 Score evaluate the model’s ability to 

identify disruptions accurately, balancing 

false positives and ensuring risks are not 

overlooked. 

Based on the analysis, refinements were 

made to enhance model performance and 

reliability. Missing values in critical 

variables were addressed through 

imputation and data cleaning. Categorical 

variables were transformed using one-hot 

encoding to ensure numeric suitability for 

model training. Feature engineering 

introduced temporal dynamics and 

interactions, extracting fields like 

'Shipping_Year,' 'Shipping_Month,' and 

creating interaction terms. Normalization 

with Min-Max Scaling ensured equal 

contribution across features, preventing 

bias in model training. 
In    conclusion,    careful    selection    and 

refinement of variables underpin effective 

predictive modeling. By integrating 

diverse variables and rigorous 

preprocessing, this study establishes a 

robust framework for analyzing and 

mitigating supply chain disruptions. 

Combining operational, financial, and 

evaluation metrics ensures model accuracy 

and provides insights for enhancing 

resilience and efficiency. 

 

Data Analytics 

To address the research question, “How 

Can Predictive Models and Advanced 

Technologies Efficiently Analyze and 

Mitigate Supply Chain Disruptions Across 

Various Industries?” a comprehensive data 

analysis was conducted. This analysis 

involved several key steps, including data 

preprocessing, exploratory data analysis, 

feature engineering, model training, 

evaluation, and interpretation, all aimed at 

providing insights into supply chain 

disruptions within the retail and healthcare 

sectors. 

 

Research Population and Sample 

The study encompassed supply chain 

operations across industries susceptible to 

disruptions, particularly in retail products. 

Focusing specifically on the transportation 

aspect within retail allowed a detailed 

examination of transportation disruptions’ 

impact. The unit of study was individual 

supply chain events, such as order 

fulfillment, inventory replenishments, and 

transportation operations. This focus 

ensured manageable scope while providing 

compreh 

ensive insights. 

Data Collection and Sources 

Historical data was collected from 

reputable industry databases and public 

datasets, including OpenML, which 

provided records of past transportation 

disruptions, their causes, and their impacts. 

Real-time data came from publicly 

available datasets, government reports, and 

case studies, offering up-to-date insights 

into transportation disruptions and 

operations. 

 

Data Preprocessing and Feature 

Engineering 

Data integrity was paramount, with 

rigorous steps like cleaning, normalization, 

and consistency checks. Columns with 

excessive missing data, such as 'Order 

Zipcode' (86.24% missing), were 

excluded. Variables with minimal missing 

data, like 'Customer Lname,' were imputed 

with placeholders such as 'Unknown.' 

Categorical variables were transformed 

using one-hot encoding to ensure 
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compatibility with machine learning 

models. Feature engineering created 

variables to capture temporal dynamics, 

extracting fields like 'Shipping_Year,' 

'Shipping_Month,' 'Shipping_Day,' and 

developing interaction terms like 'Benefit 

per Order' and 'Sales per Customer.' 

Normalization with Min-Max Scaling 

ensured uniform contribution from 

numerical features. 

 

Model Building and Training 

The primary machine learning algorithm 

used was the XGBoost Regressor, chosen 

for its efficiency and performance with 

structured data. The model was trained on 

preprocessed and scaled data, with 

parameters set for regression tasks. Key 

evaluation metrics, including MAE, MSE, 

RMSE, and R² Score, were used to assess 

predictive accuracy and reliability. Cross- 

validation using a 5-fold KFold strategy 

ensured robustness and consistency across 

data subsets, minimizing overfitting risks. 

 

Model Evaluation and Interpretation 

The evaluation metrics showed that the 

XGBoost     Regressor   achieved high 

accuracy in predicting 'Days for Shipping 

(Real),' with low error rates and consistent 

performance across data splits. Residual 

analysis   and  the Shapiro-Wilk Test 

indicated    areas  for  improvement    in 

addressing non-linear error patterns. SHAP 

(SHapley Additive exPlanations) was used 

to interpret predictions,   highlighting 

significant predictors like 'Delivery,' 'Days 

for Shipment (Scheduled),' and 'Delivery 

Status.' These   insights  validated   the 

model's  decision-making  process  and 

provided    actionable  information   for 

enhancing supply chain resilience. 

 
Data Preprocessing 

Data preprocessing was foundational, 

ensuring the dataset's integrity and 

suitability. This phase involved meticulous 

cleaning to address missing values, 

outliers, and inconsistencies. Columns 

with excessive missing data, such as 'Order 

Zipcode' (86.24% missing), were excluded 

to prevent distortion. For variables with 

minimal missing entries, like 'Customer 

Lname,' imputation methods replaced 

missing values with 'Unknown.' 

Categorical variables were transformed 

using one-hot encoding, converting them 

into a numerical format compatible with 

machine learning algorithms. Feature 

engineering was employed to capture 

temporal dynamics, extracting fields like 

'Shipping_Year,' 'Shipping_Month,' 

'Shipping_Day,' and 'Shipping_Weekday,' 

and developing interaction terms between 

'Benefit per Order' and 'Sales per 

Customer.' Finally, numerical features 

were normalized with Min-Max Scaling to 

ensure equal contribution to the model 

training process, enhancing model 

performance and reliability. 

 

Descriptive Analysis 

Descriptive analysis provided a 

comprehensive summary of the dataset, 

highlighting key patterns, trends, and 

insights essential for understanding the 

dynamics of supply chain disruptions. 

Statistical measures such as mean, median, 

and mode were calculated for operational 

metrics like delivery times and inventory 

levels to assess central tendencies. 

Measures of dispersion, including standard 

deviation and variance, were used to 

evaluate variability within these metrics. 

Visualization tools like Matplotlib and 

Seaborn created histograms and box plots, 

illustrating the distribution and spread of 

delivery times and inventory levels across 

different supply chain stages. 
These visualizations revealed significant 

trends, such as the concentration of 

delivery times within a specific range and 

the variability in inventory levels, 

providing a clear picture of the dataset's 

characteristics. This thorough descriptive 

analysis laid the groundwork for 

identifying critical factors influencing 

supply chain disruptions and informed the 

feature selection process for predictive 

modeling. 
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Predictive Modeling 

Predictive modeling formed the core of the 

data analysis, focusing on forecasting 

potential supply chain disruptions and their 

impacts using advanced machine learning 

algorithms. Several algorithms were 

evaluated, including decision trees, 

random forests, support vector machines 

(SVM), and neural networks, with the 

XGBoost Regressor ultimately selected for 

its superior performance with structured 

data. 

The model was trained on the preprocessed 

and scaled dataset, leveraging features 

such as delivery times, inventory levels, 

production rates, financial metrics, 

logistics data, supplier performance, real- 

time monitoring from IoT devices, and 

weather data. The training process 

involved splitting the dataset into training 

and testing subsets, using cross-validation 

techniques to prevent overfitting and 

ensure generalizability. Key evaluation 

metrics, including Mean Absolute Error 

(MAE), Mean Squared Error (MSE), Root 

Mean Squared Error (RMSE), and the R² 

Score, were used to assess predictive 

accuracy and reliability, demonstrating 

effectiveness in forecasting 'Days for 

Shipping (Real)' and 'Benefit per Order.' 
 

Model Evaluation 

The evaluation of the predictive models 

showed promising performance, 

particularly with the XGBoost Regressor, 

which achieved a Mean Absolute Error 

(MAE) of 0.4201 and a Mean Squared 

Error (MSE) of 0.3583 through 5-fold cross-

validation. These low error rates indicated 

high accuracy in predicting shipping days, 

while the R² Score reflected the model's 

strong explanatory power in accounting for 

variance in the dependent variables. 

Residual   analysis   further   validated   the 

model's performance, revealing that 

residuals did not follow a normal 

distribution, as indicated by the Shapiro- 

Wilk Test. This finding suggested robust 

model performance, though it also 

highlighted areas for refinement, such as 

addressing non-linear error patterns to 

enhance predictive capabilities further. 

Overall, the evaluation metrics confirmed 

the model's reliability and effectiveness in 

mitigating supply chain disruptions. 

 
Model Interpretation and Validation 

To enhance model interpretability, SHAP 

(SHapley Additive exPlanations) was used 

to elucidate the influence of various 

features on predictions. The SHAP 

summary plot identified key predictors 

such as 'Delivery,' 'Days for Shipment 

(Scheduled),' and 'Delivery Status,' 

underscoring their significant roles in 

determining shipping times. Individual 

force plots provided detailed explanations 

for specific predictions, showing how 

particular feature values contributed to 

model outputs. 
This   interpretability    was    crucial    for 

validating the model's decision-making 

process, ensuring alignment with domain 

knowledge and practical expectations. 

Cross-validation scores reinforced the 

model's robustness, demonstrating 

consistent performance across data subsets 

and enhancing confidence in its 

generalizability to unseen data. 

In conclusion, this study employed a 

systematic approach to examine supply 

chain disruptions within the retail and 

healthcare sectors. Through 

comprehensive data   preprocessing, 

detailed descriptive analysis, and advanced 

predictive modeling, the research 

identified critical factors influencing 

supply chain performance and developed 

models capable of forecasting disruptions 

with high accuracy. SHAP-based 

interpretation provided valuable insights 

into feature importance, while cross- 

validation and residual analysis ensured 

reliability and generalizability. These 

methodologies contributed to a deeper 

understanding of supply chain dynamics 

and offered actionable strategies for 

mitigating disruptions, enhancing 
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operational resilience and financial 

performance in critical industries. 

Results 

The analysis of predictive models showed 

that certain features significantly influence 

predictions regarding supply chain 

disruptions. Specifically, the SHAP feature 

importance plot identified 

"Late_delivery_risk" and "Days for 

shipment (scheduled)" as the most 

influential variables affecting predictions. 

These features consistently ranked at the 

top, highlighting their crucial roles in 

determining shipping days. The SHAP 

summary plot supported these findings, 

showing that higher values of 

"Late_delivery_risk" and "Days for 

shipment (scheduled)" are associated with 

increased shipping day predictions. In 

contrast, features like "Shipping Day" and 

"Customer City" had minimal impact, 

suggesting limited influence on model 

predictions. 
Visualization    of    individual    predictions 

through SHAP force plots illustrated how 

specific features drive model outputs for 

individual cases. For instance, in instance 

index 10, the prediction of 2.50 shipping 

days was mainly influenced by a high 

value in "Days for shipment (scheduled)," 

which had the most substantial positive 

impact on the outcome. This 

individualized interpretation emphasizes 

the model's ability to attribute predictions 

to specific feature contributions, enhancing 

transparency and interpretability. Such 

insights are invaluable for stakeholders 

aiming to understand the factors 

contributing to supply chain disruptions 

and make informed decisions to mitigate 

these risks effectively. 
Residual analysis provided critical insights 

into model performance and areas for 

improvement. The scatter plot of residuals 

versus predicted values showed a pattern 

where residuals decreased as predicted 

values increased, suggesting possible bias 

or model misspecification. The histogram 

of residual distributions showed non- 

normality, with distinct peaks indicating 

potential issues like underfitting in certain 

areas or heteroscedasticity. The QQ plot 

confirmed these deviations from 

normality, particularly at the distribution 

tails, indicating underlying complexities 

that require further refinement for 

enhanced accuracy and reliability. 

 
Results Interpretation 

In-Depth Analysis 

The evaluation metrics presented, such as 

Mean Absolute Error (MAE) of 1.058, 

Mean Squared Error (MSE), and R² Score, 

provide a quantitative view of the model’s 

predictive accuracy and effectiveness. The 

MAE of 1.058, for instance, indicates that, 

on average, the model’s predictions are off 

by around 1 day when estimating shipping 

times. In practical terms, this level of 

precision can significantly influence 

operational decision-making, particularly 

for time-sensitive industries like retail and 

healthcare. 
For operational managers, an MAE of this 

magnitude offers a reasonable degree of 

predictability in anticipating delays, which 

can facilitate preemptive actions such as 

adjusting inventory levels, reallocating 

resources, or modifying customer 

expectations. However, if the goal is to 

minimize customer dissatisfaction or avoid 

penalty costs for delayed deliveries, this 

error margin might still require fine- 

tuning, especially in industries where even 

minor delays can have cascading effects on 

the supply chain. 

The R² Score further shows the proportion 

of variance in shipping times that the 

model accounts for. A higher R² indicates 

that the model captures the relationship 

between predictor variables (such as 

"Late_delivery_risk" and "Days for 

Shipment (Scheduled)") and shipping 

delays well. This information can be 

instrumental for supply chain analysts who 

want to understand the primary drivers of 

delays and target these areas for risk 

mitigation. 

 

Visualization Discussion 
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Visual tools, such as SHAP (SHapley 

Additive exPlanations) summary plots and 

residual plots, provide valuable insights 

into the model's inner workings, especially 

when interpreting complex models like 

XGBoost. In the SHAP summary plot, for 

instance, we can observe which features 

most significantly impact the model's 

predictions. "Late_delivery_risk" and 

"Days for Shipment (Scheduled)" 

consistently show higher SHAP values, 

indicating their strong influence on 

predicted shipping times. 

 

Delivery Status Counts: 

Delivery Status Count 

Advance Shipping 40,000 

Late Delivery 100,000 

Shipping Canceled 10,000 

Shipping on Time 30,000 

 

 

The SHAP summary plot may reveal that 

as "Late_delivery_risk" increases, the 

predicted shipping days also increase, 

which aligns with expectations. This visual 

cue allows practitioners to see the direct 

relationship between higher risk and 

expected delays, reinforcing the need to 

monitor this variable closely. Similarly, by 

identifying the influence of "Days for 

Shipment (Scheduled)," companies can 

focus on scheduling adjustments as a 

means to improve predictive accuracy and 

control. 

Distribution of "Benefit per Order 

 
Table for Training Set - Benefit per 

Order 

Benefit per Order Range Frequency 

< -3000 Very Low 

-3000 to -1000 Low 

-1000 to 0 Medium 

0 to 1000 High 

> 1000 Very High 

 
Table for Testing Set - Benefit per 

Order 

Benefit per Order Range Frequency 

< -1500 Very Low 

-1500 to -500 Low 

-500 to 0 Medium 

0 to 500 High 

> 500 Very High 

 

These tables provide a general layout 

based on the histogram-like frequency 

distribution visible in the chart image. If 

exact frequencies or specific data points 

are available, they could replace the 

qualitative "Very Low," "Low," etc., in 

each range. 
 

Residual plots can further validate the 

model’s effectiveness by showing the 

distribution of prediction errors. If 

residuals are tightly clustered around zero, 

it suggests that the model performs well 

across various instances. However, if 

patterns emerge in the residuals, such as 

systematic underestimation or 
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overestimation for certain ranges, this can 

indicate areas where the model could be 

improved. 

 
The chart of SHAP (SHapley Additive 

exPlanations) summary plot. 

This plot shows how various features 

impact the model output, with SHAP 

values indicating the positive or negative 

effect of each feature on the prediction. 

Feature SHAP Impact 

(Direction) 

Feature Value (High or Low 

Impact) 

Late_delivery_risk Positive/Negative High 

Days for shipment (scheduled) Positive/Negative Varies 

Delivery Status_Shipping on 

time 

Positive/Negative Varies 

Delivery Status_Shipping 

canceled 

Positive/Negative High 

Order Status_COMPLETE Positive/Negative Low 

Shipping_Day Positive/Negative Low 

Latitude Positive/Negative Low 

Longitude Positive/Negative Low 

Order Id Negligible N/A 

Customer Zipcode Negligible N/A 

Customer Id Negligible N/A 

Customer City_Aurora Negligible N/A 

Customer State_OH Negligible N/A 

Customer City_Elk Grove Negligible N/A 

Customer City_Las Vegas Negligible N/A 

Shipping Mode_Second Class Positive/Negative Low 

Order City_Nom Pen Negligible N/A 

Shipping_Weekday Positive/Negative Varies 

Customer City_Carrollton Negligible N/A 

Order Country_Francia Negligible N/A 
 

Explanation: 

 

SHAP Impact (Direction): Indicates 

whether the feature has a positive or 

negative impact on the model output (e.g., 

increasing or decreasing the likelihood of a 

certain prediction). 

 

Feature Value (High or Low Impact): 

Refers to whether high or low values of 

each feature drive a stronger effect in the 

SHAP values, as indicated by the color 

gradient in the SHAP plot (pink for high 

values, blue for low values). 

 
Error Analysis 

Residual analysis is essential to understand 

the potential limitations of the model, 

Especially when it comes to high-stakes 

decision-making. In this case, the residuals 

do not follow a normal distribution, as 

confirmed by the Shapiro-Wilk Test. This 

non-normality could imply that there are 

nonlinear relationships within the data that 

the current model may not fully capture, 

potentially leading to biased predictions in 

certain scenarios. 

For instance, the residuals show deviation 

at the tails, which may indicate that the 

model struggles to predict accurately in 

extreme cases—such as during unexpected 

supply chain shocks or peak demand 

periods. In high-stakes applications, these 

extreme cases may carry the greatest 

consequences, suggesting a need for 

advanced modelling techniques or 
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ensemble methods to better account for 

such instances. Addressing these outliers is 

crucial in high-stakes industries where 

even a slight delay can result in lost 

revenue, reduced customer satisfaction, or 

increased operational costs. 
 

 

By understanding these limitations, supply 

chain analysts can be more cautious when 

interpreting the model’s outputs for 

unusual cases, applying additional checks 

or alternative models if necessary to ensure 

the robustness of operational decisions. 

 
Discussion 

The findings highlight the crucial roles of 

"Late Delivery Risk" and "Days for 

Shipment (Scheduled)" in predicting 

supply chain disruptions in retail and 

healthcare. These variables were 

significant in the XG Boost Regress or 

model, reinforcing literature that 

emphasizes delivery reliability and 

shipment scheduling for supply chain 

resilience (Smith & Johnson, 2022; Lee et 

al., 2023). The strong influence of "Days 

for Shipment (Scheduled)" on predicted 

shipping days underscores the impact of 

logistics timelines on delivery 

performance, while "Late Delivery Risk" 

effectively captures delay likelihood, 

serving as a strong disruption indicator. 

SHAP provided valuable interpretative 

insights, enhancing transparency and 

trustworthiness in the models. By 

clarifying each feature's contribution to 

predictions, SHAP enables stakeholders to 

prioritize key intervention areas. 

Organizations can use these insights to 

optimize shipping schedules and 

proactively manage late delivery risks, 

enhancing operational efficiency and 

customer satisfaction. However, residual 

analysis revealed potential biases or model 

misspecifications, indicating that while the 

model performs well, nuances in the data 

require further exploration to capture 

supply chain dynamics fully. 
Despite the model's strong performance, 

the study acknowledges limitations related 

to non-normal residual distribution and 

prediction biases. These issues reflect the 

complexity of supply chain disruptions and 

suggest that additional factors or advanced 

modeling techniques may be needed for a 

fuller understanding. Future research 

should consider real-time data from IoT, 

ensemble or deep learning methods, and 

broader external risk factors like 

geopolitical events and natural disasters. 

Addressing these limitations will improve 

predictive accuracy and model robustness, 

contributing to a comprehensive 

understanding of supply chain resilience. 

Ultimately, this study offers actionable 

insights for industry practitioners, enabling 

targeted risk management and predictive 

analytics to create more resilient and 

efficient supply chains. 
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